Nguồn gốc và Biến đổi MgCl2–NaCl trong Một Hồ Nước Tự Nhiên: Những Hiểu Biết Từ Dữ Liệu Hóa Học và Isotopic

Aquatic Geochemistry - Tập 24 - Trang 137-162 - 2018
Tiziano Boschetti1, Salih Muhammad Awadh2, Emma Salvioli-Mariani1
1Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
2Department of Geology, College of Science, University of Baghdad, Baghdad, Iraq

Tóm tắt

Việc khảo sát dữ liệu hóa học - đồng vị trước đây và mới (tỷ lệ 2H/1H–18O/16O, 11B/10B và 87Sr/86Sr) cho thấy nguồn gốc mưa của Hồ Sawa (Tỉnh Muthanna, Iraq) và sự kết nối của nó với các tầng nước ngầm địa phương, cung cấp nước cho hồ qua nước ngầm nổi lên từ đáy của nó thông qua các hệ thống đứt gãy. Các mô hình hóa học và đồng vị bay hơi được theo dõi bằng mã máy tính địa hóa bằng cách sử dụng thành phần khác nhau của một số nguồn nước tiềm năng vào hồ (ví dụ: Sông Euphrates và tầng chứa nước Dammam). Sản phẩm chính của các mô hình bay hơi hóa học là thạch cao, như đã được xác nhận bởi việc khảo sát khoáng chất của trầm tích và các mỏ đá xung quanh. Sự làm giàu mạnh mẽ của 18O–2H là hệ quả của hiệu ứng bay hơi ở các khu vực khô cằn; các mô hình δ18O–Cl và δ11B = + 23,4‰ loại trừ sự đóng góp của bất kỳ chất lỏng nào có nguồn gốc từ nước biển. Giá trị cuối cùng này cùng với 87Sr/86Sr = 0,707989 cho thấy nguồn gốc hỗn hợp từ các tầng chứa nước Eocene–Miocene. Các con đường đồng vị và hóa học bay hơi từ các nguồn cung cấp nước mưa trùng khớp với thành phần của hồ. Tuy nhiên, sự chuyển đổi thành phần từ NaCl sang MgCl2 đã xảy ra trong thập kỷ qua và liên quan đến các giai đoạn sau hạn hán, cho thấy rằng sự tương tác của nước nạp lại với đất đai địa phương (trao đổi Na–Mg và/hoặc sự rửa trôi của các muối lớp trên cùng) đóng vai trò trong thành phần hóa học. Điều này chứng tỏ rằng hồ bị ảnh hưởng đáng kể bởi các biến đổi khí hậu.

Từ khóa

#hồ Sawa #nước ngầm #hóa học đồng vị #bay hơi #khoáng chất thạch cao #biến đổi khí hậu

Tài liệu tham khảo

Abd-Al-Abdan RH, Al-Gurairy ASY (2017) Recent morphotectonics processes in lower valleys of Southern Desert, Iraq. J Earth Sci Clim Change 8:1–6. https://doi.org/10.4172/2157-7617.1000407 Abid MF, Al-Naseri SK, Abdullah SN (2013) Reuse of Iraqi agricultural drainage water using nanofiltration. J Membr Sep Technol 2:53–62 Adrian R et al (2009) Lakes as sentinels of climate change. Limnol Oceanogr 54:2283–2297. https://doi.org/10.4319/lo.2009.54.6_part_2.2283 Al Bomola A (2011) Temporal and spatial changes in water quality of the Euphrates river—Iraq. Lund University, Lund Al Jallad OAH (2012) Fracture mineralization and dolomitization of Paleogene–Neogene carbonates. The Petroleum Institute (United Arab Emirates), Al Ain Al-Abadi D (2013) Topographic properties and ground forms of Sawa lake. University of Thy-Qar, Qatar Al-Abadi AM, Shahid S (2016) Spatial mapping of artesian zone at Iraqi southern desert using a GIS-based random forest machine learning model. Model Earth Syst Environ 2:96. https://doi.org/10.1007/s40808-016-0150-6 Al-Dabbas MA, Al-Zubaidi AA, Al-Khafaji R (2015) Impact of climate changes on the hydrochemistry of Razaza Lake and Rahaliya—Shithatha Springs—Central Iraq. J Environ Earth Sci 5:106–115 Al-Dahaan SAJM (2014) Origin and source of springs West Iraq. J Kufa Phys 6. http://www.uokufa.edu.iq/journals/index.php/jkp/article/view/2935 Al-Dahaan SAJM, Alabidi AJ, Al-Ansari N, Knutsson S (2015a) Relationship between selected hydrochemical parameters in Springs of Najaf Province, Iraq. Engineering 7:337–346 Al-Dahaan SAJM, Hussain HM, Al-Ansari N, Knutsson S (2015b) Hydrochemistry of Springs, Najaf Area, Iraq. J Environ Hydrol 23:1–12 Al-Handal AY, Pennesi C, Abdullah DS (2015) Two new species of Mastogloia Thwaites ex W. Smith (Bacillariophyceae) from Sawa Lake, southern Iraq. Fottea 15:155–164. https://doi.org/10.5507/fot.2015.016 Al-Hasnawi NK (2015) Geomorphological analysis of the origin and evolution of Sawa Lake and evaluated for the purposes of tourism development projects. J Geogr 22:333–381 Ali KK, Ajeena AR (2016) Assessment of interconnection between surface water and groundwater in Sawa Lake area, southern Iraq, using stable isotope technique. Arab J Geosci. https://doi.org/10.1007/s12517-12016-12673-12516 Ali Khalil AEBA (2016) Detection the pollution status of soils and waters of Sawa Lake area by using remote sensing techniques. University of Al-Muthanna, Samawah Ali KK, Al-Kubaisi QY, Al-Paruany KB (2015) Isotopic study of water resources in a semi-arid region, western Iraq. Environ Earth Sci 74:1671–1686. https://doi.org/10.1007/s12665-015-4172-6 Al-Jiburi HK, Al-Basrawi NH (2009) Hydrogeology. Iraqi Bull Geol Min Spec Issue Geol Iraqi South Desert 2:77–91 Al-Jiburi MH, Al-Basrawi NH (2015) Hydrogeological map of Iraq, scale 1:1’000’000, 2nd Edition, 2013. Iraqi Bull Geol Min 11:17–26 Al-Marsoumi AMH, Al-Bayati KM, Al-Mallah EA (2006) Hydrogeochemical aspects of Tigris and Euphrates rivers within Iraq: a comparative study. Rafidain J Sci 17:34–49 Al-Mosawi WM, Al-Tememi MK, Ghalib HB, Nassar NA (2015) Sub-Bottom Profiler and Side Scan Sonar investigations, with the assistance of hydrochemical and isotopic analysis of Sawa Lake, Al-Muthana Governorate, Southern Iraq. Mesop J Mar Sci 30:81–97 Al-Muqdadi SWH (2003) Hyrogeology of the groundwater to the Al-Shanafiya area—South Iraq. University of Baghdad, Baghdad Alonso M (2015) Llacs atalassohalins, fauna estepària i crustacis. L'Atzavara 25:73–79 Al-Paruany KBN (2013) Hydrochemical and isotopic study of water resources between Haditha Dam and site of Al-Baghdadi Dam. University of Baghdad, Baghdad Al-Quraishi RIM (2013) Hydrogeochemistry of the Sawa Lake. University of Baghdad, Baghdad Al-Rawi NN (1975) Hydrogeology of Samawa Salt deposit. Internal Report SOM Library, Baghdad, pp 52 Al-Rawi N, Al-Sam S, Al-Shavarka L (1983) Hydrogeological and hydrotechnical exploration in Block 1,2 and 3 (southern desert). Final report on hydrogeology, hydrochemistry and water resources vol 9. SOM Lib Al-Ruwaih FM (1995) Chemistry of groundwater in the Dammam aquifer. Kuwait Hydrogeol J 3:42–55 Al-Sa’di MA (2010) The effect of Abu-Jir fault zone on the distribution and quality of ground water in Iraq. University of Baghdad, Baghdad Al-Shamma’a AM, Al-Mutawki KGM (2014) Estimating of groundwater age and quality of Al-Shanafiya Area Southwest Iraq. Iraqi J Sci 55:1061–1070 Alsharhan AS, Rizk ZA, Nairn AEM, Bakhit DW, Alhajari SA (2001) Hydrogeology of an Arid Region: The Arabian Gulf and Adjoining Areas. Elsevier, Amsterdam Al-Timimi YK, Al-Jiboori MH (2013) Assessment of spatial and temporal drought in Iraq during the period 1980–2010. Int J Energy Environ 4:291–302 Al-Zubedi AS, Thabit JM (2014) Comparison between 2D imaging and vertical electrical sounding in aquifer delineation: a case study of south and south west of Samawa City (IRAQ). Arab J Geosci 7:173–180. https://doi.org/10.1007/s12517-012-0788-y Al-Zubedi AS, Thabit JM (2016) Use of 2D azimuthal resistivity imaging in delineation of the fracture characteristics in Dammam aquifer within and out of Abu-Jir fault zone, central Iraq. Arab J Geosci 9:1–9. https://doi.org/10.1007/s12517-015-2070-6 Awadh SM (2016) Outstanding universal values of the Sawa Lake as a world natural heritage. Bull Iraq Nat Hist Museum 14:1–11 Awadh SM, Ahmed RM (2013) Hydrochemistry and pollution probability of selected sites along the Euphrates River. Western Iraq Arab J Geosci 6:2501–2518. https://doi.org/10.1007/s12517-012-0538-1 Awadh SM, Al-Ghani SA (2014) Assessment of sulfurous springs in the west of Iraq for balneotherapy, drinking, irrigation and aquaculture purposes. Environ Geochem Health 36:359–373. https://doi.org/10.1007/s10653-013-9555-6 Awadh SM, Muslim R (2014) The formation models of gypsum barrier, chemical temporal changes and assessments the water quality of Sawa Lake, Southern Iraq. Iraqi J Sci 55:161–173 Awadh SM, Ali KK, Alazzawi AT (2013) Geochemical exploration using surveys of spring water, hydrocarbon and gas seepage, and geobotany for determining the surface extension of Abu-Jir Fault Zone in Iraq: a new way for determining geometrical shapes of computational simulation models. J Geochem Explor 124:218–229. https://doi.org/10.1016/j.gexplo.2012.10.011 Awadh SM, Abdulhussein FM, Al-Kilabi JA (2016) Hydrogeochemical processes and water-rock interaction of groundwater in Al-Dammam aquifer at Bahr Al-Najaf, Central Iraq. Iraqi Bull Geol Min 12:1–15 Banat KM, Al-Rawi Y (1986) Hydrogeochemistry, clay minerals and carbonates of the Euphrates River Iraqi. Iraqi J Sci 27:347–362 Barbieri M, Battistel M, Boschetti T (2013) Chemical and isotope monitoring at Lake Albano (central Italy): water-rock interaction and climate change effects. Procedia Earth Planet Sci 7:53–56. https://doi.org/10.1016/j.proeps.2013.03.117 Barika J (1972) Salinization of groundwater in arid zones. Water Res 6:925–933. https://doi.org/10.1016/0043-1354(72)90044-9 Bethke CM (2008) Geochemical and biogeochemical reaction modeling, 2nd edn. Cambridge University Press, New York Bethke CM, Yeakel S (2008) The Geochemist’s Workbench®—Release 7. GWB Essentials Guide. Hydrogeology Program. University of Illinois, Champaign Boschetti T (2011) Application of brine differentiation and Langelier-Ludwig plots to fresh-to-brine waters from sedimentary basins: diagnostic potentials and limits. J Geochem Explor 108:126–130. https://doi.org/10.1016/j.gexplo.2010.12.002 Boschetti T, Cortecci G, Barbieri M, Mussi M (2007) New and past geochemical data on fresh to brine waters of the Salar de Atacama and Andean Altiplano, northern Chile. Geofluids 7:33–50. https://doi.org/10.1111/j.1468-8123.2006.00159.x Boschetti T, Toscani L, Shouakar-Stash O, Iacumin P, Venturelli G, Mucchino C, Frape SK (2011) Salt waters of the Northern Apennine Foredeep Basin (Italy): origin and evolution. Aquat Geochem 17:71–108. https://doi.org/10.1007/s10498-010-9107-y Boschetti T, De Felice V, Celico F (2013) The Pozzo del Sale groundwaters (Irpinia, Southern Apennines, Italy): origin and mechanisms of salinization. Aquat Geochem 19:303–322. https://doi.org/10.1007/s10498-013-9196-5 Boschetti T, Toscani L, Salvioli-Mariani E (2015) Boron isotope geochemistry of Na-bicarbonate, Na-chloride and Ca-chloride waters from the Northern Apennine Foredeep basin: other pieces of the sedimentary basin puzzle. Geofluids 15:546–562. https://doi.org/10.1111/gfl.12124 Buday T (1980) Stratigraphy and paleogeography. In: Kassab IIM, Jassim SZ (eds) The regional geology of Iraq, vol 1. The Geological Survey and Mineral Investigation General Directorate, Baghdad, p 445 Clesceri LS, Greenberg AE, Eaton AD (1999) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, American Water Works Association, Water Environment Federation, Washington Cotruvo JA (2005) Water desalination processes and associated health and environmental issues. Water Cond Purif 47:13-7 De Deckker P (1981) Ostracods of athalassic saline lakes—a review. In: Williams WD (ed) Salt Lakes. Developments in hydrobiology, vol 5. Springer, Netherlands, pp 131–144. https://doi.org/10.1007/978-94-009-8665-7_10 Deocampo DM, Jones BF (2014) Geochemistry of saline lakes. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, vol 7, 2nd edn. Elsevier, Oxford, pp 437–469 Dogramaci S, Firmani G, Hedley P, Skrzypek G, Grierson PF (2015) Evaluating recharge to an ephemeral dryland stream using a hydraulic model and water, chloride and isotope mass balance. J Hydrol 521:520–532 Elhamel N (2014) The development of an analytical technique to measure stable and radiogenic strontium isotope ratios using thermal ionization mass spectrometry with the double spike method. University of Calgary, Calgary Epstein S, Mayeda T (1953) Variation of O18 content of waters from natural sources. Geochim Cosmochim Acta 4:213–224. https://doi.org/10.1016/0016-7037(53)90051-9 Eugster HP, Hardie LA (1978) Saline lakes. In: Lerman A (ed) Lakes: chemistry, geology, physics. Springer, New York, pp 237–293 FAO (2004) Progress achieved in developing strategies for drought mitigation and preparedness planning in the near East Region. In: Proceedings of the third session of the agriculture, land, and water use commission for the near East. Food and Agriculture Organization of the United Nations (FAO), Doha, Qatar, March 9–11 FAO (2008) A review of drought occurrence and monitoring and planning activities in the near east region. Food and Agriculture Organization of the United Nations Regional Office for the Near East, Cairo, Egypt and National Drought Mitigation Center University of Nebraska-Lincoln, Nebraska, USA, Rome, Italy Froehlich KFO, Gonfiantini R, Rozanski K (2005) Isotopes in the lake studies. In: Aggarwal PD, Gat JR, Froehlich KFO (eds) Isotopes in the water cycle: past, present and future of a developing science. Springer, Dordrecht, pp 139–150 Gat JR (2010) Isotope hydrology: a study of the water cycle vol series on environmental science and management, vol 6. Imperial College Press, London (Printed in Singapore) Geiger R (1954) Klassifikation der klimate nach W. Köppen. In: Landolt-Börnstein, Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, alte Serie, vol 3. Springer, Berlin, pp 603–607 GEOSURV (1983) Hydrogeology, hydrochemistry and water resources in the southern desert (blocks 1, 2, 3). GEOSURV, int. rep. no. 1250–1256 Gourcy LL, Groening M, Aggarwal PK (2007) Stable oxygen and hydrogen isotopes in precipitation. In: Aggarwal PK, Gat JR, Froehlich KFO (eds) Isotopes in the water cycle: past, present and future of developing science. Springer, Dordrecht, pp 39–51 Hadi KM, Al-Ruwaih FM (2005) Impact of the environmental deposition on water quality of the limestone aquifer. Kuwait Emir J Eng Res 10:37–49 Hameed M, Ahmadalipour A, Moradkhani H (2018) Apprehensive drought characteristics over Iraq: results of a multidecadal spatiotemporal assessment. Geosciences 8:58–74. https://doi.org/10.3390/geosciences8020058 Hanna AB (1956) The nature of the saline (sabakh) soils of Iraq and their desalination. University of Arizona, Tucson Hardie LA, Eugster HP (1970) The evolution of closed-basin brines. Mineral Soc Am Spec Paper 3 3:273–290 Hassan WF (2007) The physio-chemical characteristic of Sawa Lake Water in Samawa City—Iraq. Mar Mesop 22:167–179 Hötzl H, Felber H, Zötl JG, Job C, Moser H, Rauert W, Stichler W (1978a) Wadi Ar Rimah. In: Al-Sayari SS, Zötl JG (eds) Quaternary period in Saudi Arabia, 1: sedimentological, hydrogeological, hydrochemical, geomorphological, and climatological investigations in Central and Eastern Saudi Arabia. Springer, Vienna, pp 173–194 Hötzl H et al. (1978b) Wadi Ad Dawasir and its hinterland. In: Al-Sayari SS, Zötl JG (eds) Quaternary period in Saudi Arabia, vol 1. Sedimentological, hydrogeological, hydrochemical, geomorphological, and climatological investigations in Central and Eastern Saudi Arabia. Springer, Vienna, pp 226–252 Hussain NA, Grabe sa (2009) A review of the water quality of the Mesopotamian (Southern Iraq) marshes prior to the massive desiccation of the early 1990s. Marsh Bull 4:98–120 Hussien BM (2010) Application of environmental isotopes groundwater recharge within Mulussa carbonate aquifer—West Iraq. Iraqi J Desert Stud 2:1–18 IMOS (2014) Iraqi meteorological organization and seismology—climate data of recorded in Al-Samawa station for period from 1980 to 2014 Jamil AK (1977) Geological and hydrochemical aspects of Sawa Lake - S. Iraq Bull Coll Sci 18:221–253 Jankowski J, Acworth RI, Shekarforoush S (1998) Reverse ion exchange in a deeply weathered porphyritic dacite fracture aquifer system, Yass, New South Wales, Australia. Paper presented at the proceedings of the 9th international symposium on water–rock interaction, Taupo, New Zealand Jassim SZ, Buday T (2006) Middle Palaeocene-Eocene Megasequence (AP10). In: Jassim SZ, Goff JC (eds) Geology of Iraq. Dolin, Prague and Moravian Museum, Brno, pp 155–168 Jassim SZ, Karim SA, Basi M, AI-Mubarak MA, Munir J (1984) Final report on the regional geological survey of Iraq, vol 3, Stratigraphy. Geological Survey of Iraq Jeppesen E, Søndergaard M, Liu Z (2017) Lake restoration and management in a climate change perspective: an introduction. Water. https://doi.org/10.3390/w9020122 Johnson PS, Koning DJ, Partey FK (2013) Shallow groundwater geochemistry in the Española Basin, Rio Grande rift, New Mexico: evidence for structural control of a deep thermal source. In: Hudson MR, Grauch VJS (eds) New perspectives on Rio Grande Rift Basins: from tectonics to groundwater—Geological Society of America Special Paper 494, vol 494, pp 261–301. https://doi.org/10.1130/2013.2494(11) Karroum M, Elgettafi M, Elmandour A, Wilske C, Himi M, Casas A (2017) Geochemical processes controlling groundwater quality under semi arid environment: a case study in central Morocco. Sci Total Environ 609:1140–1151. https://doi.org/10.1016/j.scitotenv.2017.07.199 Kattan Z (2008) Monitoring of the chemical and isotopic compositions of the Euphrates River in Syria. Department of Geology, Atomic Energy Commission, Damascus. http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/40/051/40051715.pdf?r=1 Kattan Z (2015) Chemical and isotopic characteristics of the Euphrates River water, Syria: factors controlling its geochemistry. Environ Earth Sci 73:4763–4778. https://doi.org/10.1007/s12665-014-3762-z Khadir ZW (2015) Geomorphological analysis of the origin and evolution of Sawa Lake and evaluated for the purposes of tourism development projects. Geogr Res J 22:333–381 Khalaf RM, Hassan WH (2013) Evaluation of irrigation water quality index (IWQI) For Al-Dammam confined aquifer in the west and southwest of Karbala City. Int J Civ Eng 2:21–34 Langmuir D (1997) Aqueous environmental geochemistry. Prentice Hall, Upper Saddle River Lazam SA (2017) Mineralogical and petrographic microfacies study of the Zahraa formation (Pliocene–Pleistocene) in Sawa Lake surrounding area. IRAQ AL-Muth J Pure Sci 4:326–336 Ma’ala KA (2009a) Geomorphology. Iraqi bulletin of geology and mining, special issue: geology of Iraqi southern desert 2:7–33 Ma’ala KA (2009b) Tectonic and structural evolution. Iraqi bulletin of geology and mining, special issue: geology of Iraqi southern desert 2:32–52 McArthur JM (2010) Strontium isotope stratigraphy. In: Ratcliffe KT, Zaitlin BA (eds) Application of modern stratigraphic techniques: theory and case histories, vol SEPM Special Publication No. 94. SEPM Society for Sedimentary Geology, Tulsa, Oklahoma, pp 129–142. https://doi.org/10.2110/sepmsp.094.129 McArthur JM, Howarth RJ, Shields GA (2012) Strontium isotope stratigraphy. In: Gradstein FM, Ogg JG, Schmitz MD, Ogg GM (eds) The geologic time scale 2012, vol 1. Elsevier, Oxford, pp 127–144 Naqash AB, Benat K, Al-Shamee F (1977) Geological, hydrological and sediment petrography study of Sawa Lake. Bull Coll Sci 18:199–220 Paris G, Gaillardet J, Louvat P (2010) Geological evolution of seawater boron isotopic composition recorded in evaporites. Geology 38:1035–1038. https://doi.org/10.1130/G31321.1 Parkhurst DL, Appelo CAJ (2013) Description of input and examples for PHREEQC version 3—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. geological survey techniques and methods, book 6, chap. A43, http://pubs.usgs.gov/tm/06/a43/ Peltier LC (1950) The geographic cycle in periglacial regions as it is related to climatic geomorphology. Ann Assoc Am Geogr 40:214–236. https://doi.org/10.1080/00045605009352070 Rzóska J (1980) Euphrates and Tigris, mesopotamian ecology and destiny. Monographiae biologicae, vol 38. Dr. W. Junk bv Publishers, The Hague Sahib LY, Marandi A, Schüth C (2016) Strontium isotopes as an indicator for groundwater salinity sources in the Kirkuk region. Iraq Sci Total Environ 562:935–945. https://doi.org/10.1016/j.scitotenv.2016.03.185 Samaan SY (1986) Geochemistry and mineralogy of the Samawa saltern, southern Iraq. University of Baghdad, Baghdad Schyfsma E et al (1978) Cuesta Region of the Tuwayq Mountains. In: Al-Sayari SS, Zötl JG (eds) Quaternary period in Saudi Arabia, vol 1. Sedimentological, hydrogeological, hydrochemical, geomorphological, and climatological investigations in Central and Eastern Saudi Arabia. Springer, Vienna, pp 194–226 Sehgal JL (1980) The soils of the Middle Tigris Project for land-use planning. State Organization for Soil and Land Reclamation, Baghdad Sissakian VK, Fouad SF (2016) Geological Map of Iraq, scale 1:1000000, 4th edn. Iraq Geological Survey Publications, Baghdad Skrzypek G, Mydłowski A, Dogramaci S, Hedley P, Gibson JJ, Grierson PF (2015) Estimation of evaporative loss based on the stable isotope composition of water using Hydrocalculator. J Hydrol 523:781–789 Swihart GH, Moore PB, Callis EL (1986) Boron isotopic composition of marine and nonmarine evaporite borates. Geochim Cosmochim Acta 50:1297–1301. https://doi.org/10.1016/0016-7037(86)90413-8 Thabit JM, Al-Yasi AI, Al-Shemmari AN (2014) Estimation of hydrolic parameters and porosity from geoelectrical properties for fractured rock aquifer in Middle Dammam Formation at Bahr Al-Najaf Basin, Iraq. Iraqi Bull Geol Min 10:41–57 UN-ESCWA, BGR (2013) Inventory of shared water resources in Western Asia. UN-ESCWA and BGR, Beirut. https://waterinventory.org/ Vengosh A (2014) Salinization and saline environments. In: Turekian K, Holland H (eds) Treatise on geochemistry, vol 11. Environmental geochemistry, 2nd edn. Elsevier, Oxford, pp 325–378. https://doi.org/10.1016/b978-0-08-095975-7.00909-8 Vengosh A, Starinsky A, Kolodny Y, Chivas AR, Raab M (1992) Boron isotope variations during fractional evaporation of sea water: New constraints on the marine vs. nonmarine debate. Geology 20:799–802. https://doi.org/10.1130/0091-7613(1992)020<0799:BIVDFE>2.3.CO;2 Wagner W (2011) Groundwater in the Arab Middle East. Springer, Berlin Warren JK (2006) Evaporites: sediments, resources and hydrocarbons. Springer, Berlin Yurtsever Y (1997) Role and contribution of environmental tracers for study of sources and processes of groundwater salinization. Paper presented at the proceedings of the rabat symposium, April 1997 Ziyadi MSF, Jawad LA, Almukhtar MA, Pohl T (2015) Day’s goby, Acentrogobius dayi Koumans, 1941 (Pisces: Gobiidae) in the desert Sawa Lake, south-west Baghdad, Iraq. Mar Biodivers Rec 8:1–5. https://doi.org/10.1017/S1755267215001220