Tính ổn định phi tuyến của L 4 trong R3BP khi cơ thể chính nhỏ hơn là một hình cầu không đồng nhất

The Journal of the Astronautical Sciences - Tập 64 - Trang 18-49 - 2016
Kumari Shalini1, Md Sanam Suraj2, Rajiv Aggarwal3
1Department of Mathematics, Deshbandhu College, University of Delhi, New Delhi, India
2Department of Mathematics, Sri Guru Teg Bahadur Khalsa College, North Campus University of Delhi, New Delhi, India
3Department of Mathematics, Sri Aurobindo College, University of Delhi, New Delhi, India

Tóm tắt

Chúng tôi đã nghiên cứu tính ổn định phi tuyến của điểm tựa tam giác L4 trong bài toán ba cơ thể (R3BP) khi cơ thể chính nhỏ hơn là một hình cầu không đồng nhất với ba lớp có mật độ khác nhau. Chúng tôi quan sát rằng theo nghĩa phi tuyến, tựa tam giác là ổn định trong khoảng ổn định tuyến tính 0<μ<μc, một giá trị chỉ tiêu khối lượng μ, ngoại trừ ba tỉ lệ khối lượng μ1′, μ2′, μ3′ trong đó định lý của Moser không áp dụng.

Từ khóa

#tính ổn định phi tuyến #điểm tựa tam giác #bài toán ba cơ thể #hình cầu không đồng nhất #khối lượng

Tài liệu tham khảo

Aggarwal, R., Z.A., Ahmad, I.: Non-linear stability of L4 in the restricted three body problem for radiated axes symmetric primaries with resonances. Bill. Astron. Soc. India 34, 327 (2006) Arnold, V.I.: On the stability of positions of equilibrium of a a Hamiltonian system of ordinary differential equations in the general case. Soviet Math. Dokl. 2, 247 (1961) Bombardelli, Pelaez: On the stability of artificial equilibrium points in the circular restricted three-body problem. Celest. Mech. Dyn. Astron. 109(1), 13–26 (2011) Bhatnagar, K.B., Hallan, P.P.: The effect of perturbation in coriollis and centrifugal forces on the nonlinear stability of equilibrium points in the restricted problem of three bodies. Celes. Mech. 30, 97 (1983) Chandra, N., Kumar, R.: Effect of oblateness on the nonlinear stability of the triangular liberation points of the restricted three-body problem in the presence of resonances. Astrophys. Space Sci. 291(1), 1–19 (2004) Deprit, A., Deprit-Bartholome, A.: Stability of the triangular Lagrangian points. Astron. Astrophys. 72, 173–179 (1967) Esteban, E.P., Vazquez, S.: Rotating stratified heterogeneous oblate spheroid in Newtonian physics. Celes. Mech. Dyna. Astronmy 81, 299–312 (2001) Ishwar, B., Sharma, J.P.: Nonlinear stability in photogravitational non-planer restricted three body problem with oblate smaller primary. Astrophys. Space Sci. 337, 563–571 (2012) Jain, R., Sinha, D.: Nonlinear stability of L4 in the restricted problem when the primaries are finite straight segment under resonances. Astrophys. Space Sci. 353, 73–88 (2014) Hallan, P.P., Jain, S., Bhatnagar, K.B.: The nonlinear stability of L 4 in the restricted three-body problem when the bigger primary is a triaxial rigid body. Celes. Mech. Dyn. Astron. 77(3), 157–184 (2000) Hallan, P.P., Mangang, K.B.: Effect of perturbations in coriolis and centrifugal forces on the nonlinear stability of equilibrium point in Robe’s restricted circular three body problem. Adv. Astron., 425412 (2008) Kushvah, B.S., Sharma, J.P., Ishwar, B.: Non-linear stability in the generalized photogravitational restricted three-body problem with Poynting-Robertson drag. Astrophys. Space Sci. 312(3), 279–293 (2007) Leontovich, A.M.: On the stability of Lagrange’s periodic solutions of the restricted three-body problem(Russian). Dokl. Akad Naunk, SSSR 143, 525–528 (1962) Lyapunov, A.M.: A general problem of stability of motion, Acad. Sci. USSR, Moscow (1956) Shalini, K., Jha, M.: Existence and stability of libration points of the restricted three body problem, when the smaller primary is a heterogeneous spheroid with three layers. Global Sci-Tech, Al-Falah’s Journel of Science & Technology 2(4) (2010) Singh, N., Narayan, A.: Nonlinear stability of the triangular libration points for radiating and oblate primaries in CR3BP in nonresonance condition. Advances in Astronomy 2015, 850252 (2015) Singh, J.: Effect of perturbations on the nonlinear stability of triangular points in the restricted three-body problem with variable mass. Astrophys. Space Sci. 321 (2), 127–135 (2009) Singh, J.: Nonlinear stability in the restricted three body problem with oblate variable mass. Astrophys. Space Sci. 333(1), 61–69 (2011) Suraj, M.S., Hassan, M.R., Asique, M.C.: The photo-gravitational R3BP when the primaries are heterogeneous spheroid with three layers. J. Astronaut. Sci. 61(2), 133–155 (2014) Szebehely, V.: Theory of Orbits, pp 242–264. Academic Press, New York (1967a) Whittaker, E.T.: A Treatise on the Analytical Dynamics of Particles and Rigid Bodies. Cambridge University Press, London (1965) Yan-Ning, F., Yi-Sui, S., Ji-Lin, Z.: Nonlinear stability of the equilibrium of a system of mass poins. Chin. Astron. Astrophys. 26(3), 354–362 (2002)