The Non-Relativistic Limit of the DKP Equation in Non-Commutative Phase-Space

Symmetry - Tập 11 Số 2 - Trang 223
Ilyas Haouam1
1Laboratoire de Physique Mathématique et de Physique Subatomique (LPMPS), Université Frères Mentouri, Constantine 25000, Algeria

Tóm tắt

The non-relativistic limit of the relativistic DKP equation for both of zero and unity spin particles is studied through the canonical transformation known as the Foldy–Wouthuysen transformation, similar to that of the case of the Dirac equation for spin-1/2 particles. By considering only the non-commutativity in phases with a non-interacting fields case leads to the non-commutative Schrödinger equation; thereafter, considering the non-commutativity in phase and space with an external electromagnetic field thus leads to extract a phase-space non-commutative Schrödinger–Pauli equation; there, we examined the effect of the non-commutativity in phase-space on the non-relativistic limit of the DKP equation. However, with both Bopp–Shift linear transformation through the Heisenberg-like commutation relations, and the Moyal–Weyl product, we introduced the non-commutativity in phase and space.

Từ khóa


Tài liệu tham khảo

Fauser, B., Tolksdorf, J., and Zeidler, E. (2006). Quantum Gravity—A Short Overview. Quantum Gravity, Birkhäuser.

Giulini, D.J.W., Kiefer, C., and Lämmerzahl, C. (2003). Lectures on Loop Quantum Gravity. Quantum Gravity, Springer. Lecture Notes in Physics.

Ashtekar, 1986, New variables for classical and quantum gravity, Phys. Rev. Lett., 57, 2244, 10.1103/PhysRevLett.57.2244

Gross, 1973, Ultraviolet behavior of Non-Abelian Gauge theories, Phys. Rev. Lett., 30, 1343, 10.1103/PhysRevLett.30.1343

Nedjadi, 1994, The Duffin-Kemmer-Petiau oscillator, J. Phys. A Math. Gen., 27, 4301, 10.1088/0305-4470/27/12/033

Moshinsky, 1989, The Dirac oscillator, J. Phys. A Math. Gen., 22, L817, 10.1088/0305-4470/22/17/002

Greiner, W. (2000). Quantum Mechanics an Introduction, Springer. [4th ed.].

Foldy, 1950, On the Dirac theory of Spin 1/2 particles and its non-relativistic limit, Phys. Rev., 78, 29, 10.1103/PhysRev.78.29

1970, Foldy-Wouthuysen transformations and related problems, Fortsch. Phys., 18, 149, 10.1002/prop.19700180402

Gosselin, 2007, Semiclassical diagonalization of quantum Hamiltonian and equations of motion with Berry phase corrections, Eur. Phys. J. B, 58, 137, 10.1140/epjb/e2007-00212-6

Jansen, 1989, Revision of the Douglas-Kroll transformation, Phys. Rev. A, 39, 6016, 10.1103/PhysRevA.39.6016

Nakajima, 2012, The Douglas–Kroll–Hess approach, Chem. Rev., 112, 385, 10.1021/cr200040s

Aharonov, 1959, Significance of electromagnetic potentials in the quantum theory, Phys. Rev., 115, 485, 10.1103/PhysRev.115.485

Khanna, 2000, Letter to the editor: Galilean covariance and the Duffin-Kemmer-Petiau equation, J. Phys. A Math. Gen., 33, L273, 10.1088/0305-4470/33/31/102

Connes, 2000, A short survey of noncommutative geometry, J. Math. Phys., 41, 3832, 10.1063/1.533329

Chamseddine, 2015, Quanta of geometry: Noncommutative aspects, Phys. Rev. Lett., 114, 091302, 10.1103/PhysRevLett.114.091302

Kastler, 2000, Noncommutative geometry and fundamental physical interactions: The Lagrangian level—Historical sketch and description of the present situation, J. Math. Phys., 41, 3867, 10.1063/1.533330

Madore, 1998, Introduction to non-commutative geometry, Proc. Sci. (PoS), 001, 1

Seiberg, N., and Witten, E. (1999). String theory and noncommutative geometry. J. High Energy Phys., 9.

Bjorken, J.D., and Drell, S.D. (1964). Relativistic Quantum Mechanics, McGraw-Hill.

Messiah, A. (1968). Quantum Mechanics, Wiley.

Kang, 2005, Representation of noncommutative phase space, Mod. Phys. Lett. A, 20, 2165, 10.1142/S0217732305017421

Bertolami, 2005, Noncommutative gravitational quantum well, Phys. Rev. D, 72, 025010, 10.1103/PhysRevD.72.025010

Yang, 2010, DKP oscillator with spin-0 in three-dimensional non-commutative phase space, Int. J. Theor. Phys., 49, 644, 10.1007/s10773-010-0244-2

Haouam, 2018, The Foldy-Wouthuysen transformation of the Dirac equation in noncommutative Phase-Space, J. Mod. Phys., 9, 2021, 10.4236/jmp.2018.911127

Wang, 2007, The HMW effect in noncommutative quantum mechanics, J. Phys. A Math. Theor., 40, 2197, 10.1088/1751-8113/40/9/021

Haouam, 2018, The Phase-Space noncommutativity effect on the large and small wave-function components approach at Dirac equation, Open Access Library J., 5, e4108

Curtright, 1998, Features of Time-independent Wigner functions, Phys. Rev. D, 58, 025002, 10.1103/PhysRevD.58.025002

Petiau, G. (1936). Contribution à la Théorie des Equations d’Ondes Corpuscolaires. [Ph.D. Thesis, University of Paris].

Nicholas, 1938, Quantum theory of Einstein-Bose particles and nuclear interaction, Proc. R. Soc., 166, 127

Duffin, 1939, On the characteristic matrices of covariant systems, Phys. Rev., 54, 1114, 10.1103/PhysRev.54.1114

Capri, A.Z. (2002). Relativistic Quantum Mechanics and Introduction to Quantum Field Theory, World Scientific.

Casana, 2002, Spin 1 fields in Riemann-Cartan Space-Times via Duffin-Kemmer-Petiau Theory, Gen. Relativ. Gravit., 34, 1941, 10.1023/A:1020732611995

Nicholas, 1939, The particle aspect of meson theory, Proc. R. Soc. A, 173, 91

Schwabl, F. (1995). Quantum Mechanics, Springer.

Li, Y., Sauzin, D., and Sun, S. (2018). The Baker–Campbell–Hausdorff formula via mould calculus. Lett. Math. Phys.

Visser, 2015, Special-case closed form of the Baker-Campbell-Hausdorff formula, J. Phys. A Math. Theor., 48, 225207, 10.1088/1751-8113/48/22/225207

Nikitin, 1978, Poincare invariant differential equations for particles of arbitrary spin, Theor. Math. Phys., 34, 203, 10.1007/BF01028837

Moshin, 2008, On the non-relativistic limit of linear wave equations for zero and unity spin particles, Mod. Phys. Lett. A, 23, 129, 10.1142/S0217732308023803

Alexander, J.S. (arXiv, 2004). Analysis of wave equations for spin-1 particles interacting with an electromagnetic field, arXiv.