The Nanophysiology of Fast Transmitter Release

Trends in Neurosciences - Tập 39 - Trang 183-197 - 2016
Elise F. Stanley1
1Laboratory of Synaptic Transmission, KD 7-418, The Krembil Institute, 60 Leonard Street, Toronto, ON M5T 2S8, Canada

Tài liệu tham khảo

Katz, 1967, The timing of calcium action during neuromuscular transmission, J. Physiol., 189, 535, 10.1113/jphysiol.1967.sp008183 Llinas, 1976, Presynaptic calcium currents and their relation to synaptic transmission: voltage clamp study in squid giant synapse and theoretical model for the calcium gate, Proc. Natl. Acad. Sci. U.S.A., 73, 2918, 10.1073/pnas.73.8.2918 Llinas, 1972, Calcium transients in presynaptic terminal of squid giant synapse: detection with aequorin, Science, 176, 1127, 10.1126/science.176.4039.1127 Miledi, 1969, Transmitter release induced by injection of calcium ions into nerve terminals, Proc. Biol. Sci., 183, 421, 10.1098/rspb.1973.0026 Katz, 1969 Eggermann, 2011, Nanodomain coupling between Ca2+ channels and sensors of exocytosis at fast mammalian synapses, Nat. Rev. Neurosci., 13, 7, 10.1038/nrn3125 Meinrenken, 2003, Local routes revisited: the space and time dependence of the Ca2+ signal for phasic transmitter release at the rat calyx of Held, J. Physiol., 547, 665 Stanley, 1997, The calcium channel and the organization of the presynaptic transmitter release face, Trends Neurosci., 20, 404, 10.1016/S0166-2236(97)01091-6 Augustine, 2001, How does calcium trigger neurotransmitter release?, Curr. Opin. Neurobiol., 11, 320, 10.1016/S0959-4388(00)00214-2 Bullock, 1948, Properties of a single synapse in the stellate ganglion of squid, J. Gen. Physiol., 11, 343 Llinas, 1981, Presynaptic calcium currents in squid giant synapse, Biophys. J., 33, 289, 10.1016/S0006-3495(81)84898-9 Llinas, 1981, Relationship between presynaptic calcium current and postsynaptic potential in squid giant synapse, Biophys. J., 33, 323, 10.1016/S0006-3495(81)84899-0 Llinas, 1982, Transmission by presynaptic spike-like depolarization in the squid giant synapse, Proc. Natl. Acad. Sci. U.S.A., 79, 2415, 10.1073/pnas.79.7.2415 Adler, 1991, Alien intracellular calcium chelators attenuate neurotransmitter release at the squid giant synapse, J. Neurosci., 11, 1496, 10.1523/JNEUROSCI.11-06-01496.1991 Gentile, 2005, A unified model of presynaptic release site gating by calcium channel domains, Eur. J. Neurosci., 21, 278, 10.1111/j.1460-9568.2004.03841.x Stanley, 1991, Single calcium channels on a cholinergic presynaptic nerve terminal, Neuron, 7, 585, 10.1016/0896-6273(91)90371-6 Stanley, 1993, Single calcium channels and acetylcholine release at a presynaptic nerve terminal, Neuron, 11, 1007, 10.1016/0896-6273(93)90214-C Pumplin, 1978, Membrane ultrastructure of the giant synapse of the squid, Neuroscience, 3, 685, 10.1016/0306-4522(78)90065-9 Heuser, 1974, Functional changes in frog neuromuscular junctions studied with freeze fracture, J. Neurocytol., 3, 109, 10.1007/BF01111936 Robitaille, 1990, Strategic location of calcium channels at transmitter release sites of frog neuromuscular synapses, Neuron, 5, 773, 10.1016/0896-6273(90)90336-E Heuser, 1979, Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release, J. Cell Biol., 81, 275, 10.1083/jcb.81.2.275 Kerr, 1984, A venom peptide with a novel presynaptic blocking action, Nature, 308, 282, 10.1038/308282a0 Yoshikami, 1989, The inhibitory effects of omega-conotoxins on Ca channel and synapses, Ann. N. Y. Acad. Sci., 560, 230, 10.1111/j.1749-6632.1989.tb24100.x Luo, 2015, Transmitter release is evoked with low probability predominately by calcium flux through single channel openings at the frog neuromuscular junction, J. Neurophysiol., 113, 2480, 10.1152/jn.00879.2014 Wachman, 2004, Spatial distribution of calcium entry evoked by single action potentials within the presynaptic active zone, J. Neurosci., 24, 2877, 10.1523/JNEUROSCI.1660-03.2004 Borst, 1995, Pre- and postsynaptic whole-cell recordings in the medial nucleus of the trapezoid body of the rat, J. Physiol., 489, 825, 10.1113/jphysiol.1995.sp021095 Takahashi, 1996, Presynaptic calcium current modulation by a metabotropic glutamate receptor, Science, 274, 594, 10.1126/science.274.5287.594 Bollmann, 2000, Calcium sensitivity of glutamate release in a calyx-type terminal, Science, 289, 953, 10.1126/science.289.5481.953 Schneggenburger, 2000, Intracellular calcium dependence of transmitter release rates at a fast central synapse, Nature, 406, 889, 10.1038/35022702 Fedchyshyn, 2005, Developmental transformation of the release modality at the calyx of Held synapse, J. Neurosci., 25, 4131, 10.1523/JNEUROSCI.0350-05.2005 Hoffpauir, 2006, Synaptogenesis of the calyx of Held: rapid onset of function and one-to-one morphological innervation, J. Neurosci., 26, 5511, 10.1523/JNEUROSCI.5525-05.2006 Ford, 2009, Fenestration of the calyx of Held occurs sequentially along the tonotopic axis, is influenced by afferent activity, and facilitates glutamate clearance, J. Comp. Neurol., 514, 92, 10.1002/cne.21998 Popper, 1963 Zucker, 1983, Presynaptic calcium diffusion and the time courses of transmitter release and synaptic facilitation at the squid giant synapse, J. Neurosci., 3, 1263, 10.1523/JNEUROSCI.03-06-01263.1983 Parnas, 1986, Neurotransmitter release and it facilitation in the crayfish. VII. Another voltage dependent process besides Ca-entry controls time course of phasic release, Pflugers Arch., 406, 121, 10.1007/BF00586672 Fogelson, 1985, Presynaptic calcium diffusion from various arrays of single channels, Biophys. J., 48, 1003, 10.1016/S0006-3495(85)83863-7 Chad, 1984, Calcium domains associated with individual channels can account for anomalous voltage relations of Ca-dependent responses, Biophys. J., 45, 993, 10.1016/S0006-3495(84)84244-7 Simon, 1985, Compartmentalization of the submembrane calcium activity during calcium influx and its significance in transmitter release, Biophys. J., 48, 485, 10.1016/S0006-3495(85)83804-2 Zucker, 1986, Relationship between transmitter release and presynaptic calcium influx when calcium enters through discrete channels, Proc. Natl. Acad. Sci. U.S.A., 83, 3032, 10.1073/pnas.83.9.3032 Llinas, 1992, Microdomains of high calcium concentration in a presynaptic terminal, Science, 256, 677, 10.1126/science.1350109 Zucker, 1993, Calcium and transmitter release, J. Physiol. Paris, 87, 25, 10.1016/0928-4257(93)90021-K Lisman, 2007, The sequence of events that underlie quantal transmission at central glutamatergic synapses, Nat. Rev. Neurosci., 8, 597, 10.1038/nrn2191 Augustine, 1990, Regulation of transmitter release at the squid giant synapse by presynaptic delayed rectifier potassium current, J. Physiol., 431, 343, 10.1113/jphysiol.1990.sp018333 Augustine, 1991, The calcium signal for transmitter secretion from presynaptic nerve terminals, Ann. N. Y. Acad. Sci., 635, 365, 10.1111/j.1749-6632.1991.tb36505.x Zucker, 1991, Presynaptic calcium in transmitter release and posttetanic potentiation, Ann. N. Y. Acad. Sci., 635, 191, 10.1111/j.1749-6632.1991.tb36492.x Bertram, 1996, The single domain/bound calcium hypothesis of transmitter release and facilitation, J. Neurophysiol., 75, 1919, 10.1152/jn.1996.75.5.1919 Borst, 1996, Calcium influx and transmitter release in a fast CNS synapse, Nature, 383, 431, 10.1038/383431a0 Meinrenken, 2002, Calcium secretion coupling at calyx of held governed by nonuniform channel-vesicle topography, J. Neurosci., 22, 1648, 10.1523/JNEUROSCI.22-05-01648.2002 Naraghi, 1997, Linearized buffered Ca2+ diffusion in microdomains and its implications for calculation of [Ca2+] at the month of a calcium channel, J. Neurosci., 17, 6961, 10.1523/JNEUROSCI.17-18-06961.1997 Mulligan, 2001, Mitral cell presynaptic Ca2+ influx and synaptic transmission in frog amygdala, Neuroscience, 104, 137, 10.1016/S0306-4522(01)00057-4 Wang, 2008, Synaptic vesicles in mature calyx of Held synapses sense higher nanodomain calcium concentrations during action potential-evoked glutamate release, J. Neurosci., 28, 14450, 10.1523/JNEUROSCI.4245-08.2008 Kochubey, 2009, Developmental regulation of the intracellular Ca2+ sensitivity of vesicle fusion and Ca2+-secretion coupling at the rat calyx of Held, J. Physiol., 587, 3009, 10.1113/jphysiol.2009.172387 Nakamura, 2015, Nanoscale distribution of presynaptic Ca2+ channels and its impact on vesicular release during development, Neuron, 85, 145, 10.1016/j.neuron.2014.11.019 Iwasaki, 1998, Developmental changes in calcium channel types mediating synaptic transmission in rat auditory brainstem, J. Physiol., 509, 419, 10.1111/j.1469-7793.1998.419bn.x Taschenberger, 2002, Optimizing synaptic architecture and efficiency for high-frequency transmission, Neuron, 36, 1127, 10.1016/S0896-6273(02)01137-6 Taschenberger, 2000, Fine-tuning an auditory synapse for speed and fidelity: developmental changes in presynaptic waveform, EPSC kinetics, and synaptic plasticity, J. Neurosci., 20, 9162, 10.1523/JNEUROSCI.20-24-09162.2000 Iwasaki, 2001, Developmental regulation of transmitter release at the calyx of Held in rat auditory brainstem, J. Physiol., 534, 861, 10.1111/j.1469-7793.2001.00861.x Balakrishnan, 2015, Synaptic vesicle exocytosis at the dendritic lobules of an inhibitory interneuron in the mammalian retina, Neuron, 87, 563, 10.1016/j.neuron.2015.07.016 Johnson, 2005, Increase in efficiency and reduction in Ca2+ dependence of exocytosis during development of mouse inner hair cells, J. Physiol., 563, 177, 10.1113/jphysiol.2004.074740 Stanley, 2015, Single calcium channel domain gating of synaptic vesicle fusion at fast synapses; analysis by graphic modeling, Channels (Austin), 9, 324, 10.1080/19336950.2015.1098793 Weber, 2010, N-type Ca2+ channels carry the largest current: implications for nanodomains and transmitter release, Nat. Neurosci., 13, 1348, 10.1038/nn.2657 Bertram, 1999, Modeling study of the effects of overlapping Ca2+ microdomains on neurotransmitter release, Biophys. J., 76, 735, 10.1016/S0006-3495(99)77240-1 Berridge, 2000, The versatility and universality of calcium signalling, Nat. Rev. Mol. Cell Biol., 1, 11, 10.1038/35036035 Stanley, 2003, Molecular scaffold reorganization at the transmitter release site with vesicle exocytosis or botulinum toxin C1, Eur. J. Neurosci., 18, 2403, 10.1046/j.1460-9568.2003.02948.x Brandt, 2005, Few CaV1.3 channels regulate the exocytosis of a synaptic vesicle at the hair cell ribbon synapse, J. Neurosci., 25, 11577, 10.1523/JNEUROSCI.3411-05.2005 Goutman, 2007, Time course and calcium dependence of transmitter release at a single ribbon synapse, Proc. Natl. Acad. Sci. U.S.A., 104, 16341, 10.1073/pnas.0705756104 Jarsky, 2010, Nanodomain control of exocytosis is responsible for the signaling capability of a retinal ribbon synapse, J. Neurosci., 30, 11885, 10.1523/JNEUROSCI.1415-10.2010 Dittrich, 2013, An excess-calcium-binding-site model predicts neurotransmitter release at the neuromuscular junction, Biophys. J., 104, 2751, 10.1016/j.bpj.2013.05.023 Luo, 2011, Single-pixel optical fluctuation analysis of calcium channel function in active zones of motor nerve terminals, J. Neurosci., 31, 11268, 10.1523/JNEUROSCI.1394-11.2011 Rozov, 2001, Transmitter release modulation by intracellular Ca2+ buffers in facilitating and depressing nerve terminals of pyramidal cells in layer 2/3 of the rat neocortex indicates a target cell-specific difference in presynaptic calcium dynamics, J. Physiol., 531, 807, 10.1111/j.1469-7793.2001.0807h.x Schmidt, 2013, Nanodomain coupling at an excitatory cortical synapse, Curr. Biol., 23, 244, 10.1016/j.cub.2012.12.007 Bucurenciu, 2008, Nanodomain coupling between Ca2+ channels and Ca2+ sensors promotes fast and efficient transmitter release at a cortical GABAergic synapse, Neuron, 57, 536, 10.1016/j.neuron.2007.12.026 Bucurenciu, 2010, A small number of open Ca2+ channels trigger transmitter release at a central GABAergic synapse, Nat. Neurosci., 13, 19, 10.1038/nn.2461 Scimemi, 2012, The number and organization of Ca2+ channels in the active zone shapes neurotransmitter release from Schaffer collateral synapses, J. Neurosci., 32, 18157, 10.1523/JNEUROSCI.3827-12.2012 Vyleta, 2014, Loose coupling between Ca2+ channels and release sensors at a plastic hippocampal synapse, Science, 343, 665, 10.1126/science.1244811 Goswami, 2012, Miniature IPSCs in hippocampal granule cells are triggered by voltage-gated Ca2+ channels via microdomain coupling, J. Neurosci., 32, 14294, 10.1523/JNEUROSCI.6104-11.2012 Dai, 2015, Spontaneous vesicle release is not tightly coupled to voltage-gated calcium channel-mediated Ca2+ Influx and is triggered by a Ca2+ sensor other than synaptotagmin-2 at the juvenile mice calyx of Held synapses, J. Neurosci., 35, 9632, 10.1523/JNEUROSCI.0457-15.2015 Wong, 2013, Synaptic vesicle capture by CaV2.2 calcium channels, Front. Cell. Neurosci., 7, 101, 10.3389/fncel.2013.00101 Carpenter, 1911, The ciliary ganglion of birds, Folia Neurobiol., 5, 738 Stanley, 1989, Calcium currents in a vertebrate presynaptic nerve terminal: the chick ciliary ganglion calyx, Brain Res., 505, 341, 10.1016/0006-8993(89)91465-0 Stanley, 1991, Characterization of a calcium current in a vertebrate cholinergic presynaptic nerve terminal, J. Neurosci., 11, 985, 10.1523/JNEUROSCI.11-04-00985.1991 Heuser, 1981, Structural changes after transmitter release at the frog neuromuscular junction, J. Cell Biol., 88, 564, 10.1083/jcb.88.3.564 Harlow, 2001, The architecture of active zone material at the frog's neuromuscular junction, Nature, 409, 479, 10.1038/35054000 Wimmer, 2006, Donut-like topology of synaptic vesicles with a central cluster of mitochondria wrapped into membrane protrusions: a novel structure–function module of the adult calyx of Held, J. Neurosci., 26, 109, 10.1523/JNEUROSCI.3268-05.2006 Matveev, 2009, Ca2+ current versus Ca2+ channel cooperativity of exocytosis, J. Neurosci., 29, 12196, 10.1523/JNEUROSCI.0263-09.2009 Stanley, 1990, Calcium currents recorded from a vertebrate presynaptic nerve terminal are resistant to the dihydropyridine nifedipine, Proc. Natl. Acad. Sci. U.S.A., 87, 9683, 10.1073/pnas.87.24.9683