The Nanofication and Functionalization of Bacterial Cellulose and Its Applications
Tóm tắt
Từ khóa
Tài liệu tham khảo
Costanza, 2016, The UN sustainable development goals and the dynamics of well-being, Front. Ecol. Environ., 14, 59, 10.1002/fee.1231
Akinsemolu, 2018, The role of microorganisms in achieving the sustainable development goals, J. Clean. Prod., 182, 139, 10.1016/j.jclepro.2018.02.081
Lee, 2012, Systems metabolic engineering of microorganisms for natural and non-natural chemicals, Nat. Chem. Biol., 8, 536, 10.1038/nchembio.970
Choi, 2015, Biorefineries for the production of top building block chemicals and their derivatives, Metab. Eng., 28, 223, 10.1016/j.ymben.2014.12.007
Choi, 2015, One-step fermentative production of poly(lactate-co-glycolate) from carbohydrates in Escherichia coli, Nat. Biotechnol., 34, 435, 10.1038/nbt.3485
Ullah, 2016, Advances in biomedical and pharmaceutical applications of functional bacterial cellulose-based nanocomposites, Carbohydr. Polym., 150, 330, 10.1016/j.carbpol.2016.05.029
Khan, 2017, Functional biopolymers produced bybiochemical technology considering applications in food engineering, Korean J. Chem. Eng., 24, 816, 10.1007/s11814-007-0047-1
Petersen, 2011, Bacterial cellulose-based materials andmedical devices: current state and perspectives, Appl. Microbiol. Biotechnol., 91, 1277, 10.1007/s00253-011-3432-y
Shezad, 2010, Physicochemical and mechanicalcharacterization of bacterial cellulose produced with an excellent productivityin static conditions using a simple fed-batch cultivation strategy, Carbohydr. Polym., 82, 173, 10.1016/j.carbpol.2010.04.052
Lee, K.Y. (2018). Nanocellulose and Sustainability: Production, Properties, Applications, and Case Studies. Sustainability: Contributions through Science and Technology, CRC Press.
Brown, 1886, XIX.-The chemical action of pure cultivations of bacterium aceti, J. Chem. Soc. Trans., 49, 172, 10.1039/CT8864900172
Brown, 1886, XLIII.-On an acetic ferment which forms cellulose, J. Chem. Soc. Trans., 49, 432, 10.1039/CT8864900432
Matsutani, 2015, Adaptive mutation related to cellulose producibility in Komagataeibactermedellinensis (Gluconacetobacter xylinus) NBRC 3288, Appl. Microbiol. Biotechnol., 99, 7229, 10.1007/s00253-015-6598-x
Yamada, 2012, Description of Komagataeibacter gen. nov., with proposals ofnew combinations (Acetobacteraceae), J. Gen. Appl. Microbiol., 58, 397, 10.2323/jgam.58.397
Hu, 2014, Functionalized bacterial cellulose derivatives and nanocomposites, Carbohydr. Polym., 101, 1043, 10.1016/j.carbpol.2013.09.102
Cacicedo, 2016, Progress in bacterial cellulose matrices for biotechnological applications, Bioresour. Technol., 213, 172, 10.1016/j.biortech.2016.02.071
Gao, 2019, A natural in situ fabrication method of functional bacterial cellulose using a microorganism, Nat. Commun., 10, 437, 10.1038/s41467-018-07879-3
Ludwicka, K., Jedrzejczak-Krzepkowska, M., Kubiak, K., Kolodziejczyk, M., Pankiewicz, T., and Bielecki, S. (2016). Medical and cosmetic applications of bacterial nanocellulose. Bacterial NanoCellulose, 145–165.
Keshk, 2014, Bacterial cellulose production and its industrial applications, J. Bioprocess. Biotech., 4, 1, 10.4172/2155-9821.1000150
Ng, 2004, Development and production ofcholesterol-lowering Monascus-nata complex, World J. Microbiol. Biotechnol., 20, 875, 10.1007/s11274-004-0873-9
Budhiono, 1999, Kinetic aspects of bacterialcellulose formation in nata-de-coco culture system, Carbohydr. Polym., 40, 137, 10.1016/S0144-8617(99)00050-8
Healy, 2017, Comprehensive Biomaterials II, Bacterial Cellulose as Biomaterial, Volume 2, 505
Esa, 2014, Overview of bacterial cellulose production and application, Agric. Agric. Sci. Procedia, 2, 113
Vandamme, 2002, Bacterial cellulose, Biopolymers, Volume 5, 37
Chawla, 2009, Microbial Cellulose: Fermentative Production and Applications, Food Technol. Biotechnol., 47, 107
Gayathry, 2014, Production and Characterization of Microbial Cellulosic Fibre From Acetobacter Xylinum, Indian J. Fibre Text., 39, 93
Sani, 2010, Improvements in the production of bacterial synthesized biocellulose nanofibres using different culture methods, J. Chem. Technol. Biotechnol., 85, 151, 10.1002/jctb.2300
Ross, 1991, Cellulose biosynthesis and function in bacteria, Microbiol. Rev., 55, 35, 10.1128/mr.55.1.35-58.1991
Poletto, M. (2015). Microbial cellulose-Biosynthesis mechanisms and medical applications. Cellululose-Fundamental Aspects and Current Trends, IntechOpen.
Morgan, 2013, Crystallographic snapshot of cellulose synthesis and membrane translocation, Nature, 493, 181, 10.1038/nature11744
Brown, 2004, Cellulose structure and biosynthesis: what is in store for the 21st century?, J. Polym. Sci. Polym. Chem., 42, 487, 10.1002/pola.10877
Dahman, 2009, Nanostructured Biomaterials and Biocomposites from Bacterial Cellulose Nanofibers, J. Nanosci. Nanotechnol., 9, 5105, 10.1166/jnn.2009.1466
Jang, 2017, Bacterial cellulose as an example product for sustainable production and consumption, Microb. Biotechnol., 10, 1181, 10.1111/1751-7915.12744
Zywicka, 2015, Modification of bacterial cellulose through exposure to the rotatingmagnetic field, Carbohydr. Polym., 133, 52, 10.1016/j.carbpol.2015.07.011
Forng, 1989, Synthetic medium for Acetobacter xylinum that can be used for isolation of auxotrophic mutants and study of cellulose biosynthesis, Appl. Environ. Microbiol., 55, 1317, 10.1128/aem.55.5.1317-1319.1989
Koyama, 1997, Parallel upstructure evidences the molecular directionality during biosynthesis of bacterial cellulose, Proc. Natl. Acad. Sci. USA, 94, 9091, 10.1073/pnas.94.17.9091
Zugenmaier, 2001, Conformation and packing of various crystalline cellulose fibers, Prog. Polym. Sci., 26, 1341, 10.1016/S0079-6700(01)00019-3
Grumezescu, 2016, Bacterial cellulose for advanced medical materials, Nanobiomaterials in Soft Tissue Engineering, Volume 5, 57
Azeredo, 2019, Bacterial cellulose as a raw material for food and food packaging applications, Front. Sustain. Food Syst., 7, 1
Jawaid, M., Boufi, S., and Khalil, A. (2017). Bacterial cellulose: Preparation and characterization. Cellulose-Reinforced Nanofibre Composites, Woodhead Publishing.
Kralisch, 2010, White biotechnology for cellulose manufacturing: The HoLiR concept, Biotechnol. Bioeng., 105, 740, 10.1002/bit.22579
Yan, 2008, Biosynthesis of bacterial cellulose/multi-walled carbon nanotubes in agitated culture, Carbohydr. Polym., 74, 659, 10.1016/j.carbpol.2008.04.028
Tse, 2010, Observation of symmetrical reflection sidebands in a silica suspended-core fiber Bragg grating, Opt. Express., 18, 17373, 10.1364/OE.18.017373
Wang, 2019, Bacterial cellulose production, properties and applications with different culture methods-A review, Carbohydr. Polym., 219, 63, 10.1016/j.carbpol.2019.05.008
Lin, 2013, Biosynthesis, production and applications of bacterial cellulose, Cellulose, 20, 2191, 10.1007/s10570-013-9994-3
Khan, 2015, Bacterial cellulose composites: Synthetic strategies and multiple applications in bio-medical and electro-conductive field, Biotechnol. J., 10, 1847, 10.1002/biot.201500106
Kouda, 1998, Inhibitory effect of carbon dioxide on bacterial cellulose production by Acetobacter in agitated culture, J. Ferment. Bioeng., 85, 318, 10.1016/S0922-338X(97)85682-6
Kouda, 1998, Effects of oxygen and carbon dioxide pressures on bacterial cellulose production by Acetobacter in aerated and agitated culture, J. Ferment. Bioeng., 84, 124, 10.1016/S0922-338X(97)82540-8
Kouda, 1997, Effect of agitator configuration on bacterial cellulose productivity in aerated and agitated culture, J. Ferment. Bioeng., 83, 371, 10.1016/S0922-338X(97)80144-4
Hu, 2013, Factors impacting the formation of sphere-like bacterial cellulose particles and their biocompatibility for human osteoblast growth, Biomacromolecules, 14, 3444, 10.1021/bm400744a
Watanabe, 1998, Structural features and properties of bacterial cellulose produced in agitated culture, Cellulose, 5, 187, 10.1023/A:1009272904582
Shoda, 2005, Recent advances in bacterial cellulose production, Biotechnol. Bioprocess Eng., 10, 1, 10.1007/BF02931175
Wu, 2015, Production of bacterial cellulose membranes in a modified airlift bioreactor by Gluconacetobacter xylinus, J. Biosci. Bioeng., 120, 444, 10.1016/j.jbiosc.2015.02.018
Gratton, 2008, The Effect of Particle Design on Cellular Internalization Pathways, Proc. Natl. Acad. Sci. USA, 105, 11613, 10.1073/pnas.0801763105
Lin, 2015, The Shape and Size Effects of Polycation Functionalized Silica Nanoparticles on Gene Transfection, Acta Biomater., 11, 381, 10.1016/j.actbio.2014.09.004
Vasconcelos, 2017, Bacterial cellulose nanocrystals produced under different hydrolysisconditions: Properties and morphological features, Carbohydr. Polym., 155, 425, 10.1016/j.carbpol.2016.08.090
Revol, 1992, Helicoidal self-ordering of cellulose microfibrils in aqueous suspension, Int. J. Biol. Macromol., 14, 170, 10.1016/S0141-8130(05)80008-X
George, 2005, Characterization of chemically treated bacterial (Acetobacter xylinum) biopolymer: some thermo-mechanical properties, Int. J. Biol. Macromol., 37, 189, 10.1016/j.ijbiomac.2005.10.007
Brandes, 2020, Production with a High Yield of Bacterial Cellulose Nanowhiss by Enzymatic Hydrolysis, Int. J. Nanosci., 19, 1950015, 10.1142/S0219581X19500157
Moriana, 2016, Cellulose nanocrystals from forestresidues as reinforcing agents for composites: A study from macro- tonano-dimensions, Carbohydr. Polym., 139, 139, 10.1016/j.carbpol.2015.12.020
Raghuwanshi, 2018, Cellulose Dissolution in Ionic Liquid: Ion Binding Revealed by Neutron Scattering, Macromolecules, 51, 7649, 10.1021/acs.macromol.8b01425
Youngs, 2011, Neutron diffraction, NMR and molecular dynamics study of glucose dissolved in the ionic liquid 1-ethyl-3-methylimidazolium acetate, Chem. Sci., 2, 1594, 10.1039/c1sc00241d
Bowron, 2010, Structure and Dynamics of 1-Ethyl-3-methylimidazolium Acetate via Molecular Dynamics and Neutron Diffraction, J. Phys. Chem. B, 114, 7760, 10.1021/jp102180q
Dufresne, 2000, Processing and Characterization of New Thermoset Nanocomposites Based on Cellulose Whiskers, Compos. Compos. Interfaces, 7, 117, 10.1163/156855400300184271
Hirai, 2009, Phase Separation Behavior in Aqueous Suspensions of Bacterial Cellulose Nanocrystals Prepared by Sulfuric Acid Treatment, Langmuir, 25, 497, 10.1021/la802947m
Singhsa, 2018, Bacterial Cellulose Nanocrystals (BCNC) Preparation and Characterization from Three Bacterial Cellulose Sources and Development of Functionalized BCNCs as Nucleic Acid Delivery Systems, ACS Appl. Nano Mater., 1, 209, 10.1021/acsanm.7b00105
Lagaron, 2011, Optimization of the nanofabrication by acid hydrolysis of bacterial cellulose nanowhiskers, Carbohydr. Polym., 85, 228, 10.1016/j.carbpol.2011.02.021
Pirich, 2015, Bacterial cellulose nanocrystals: impact of the sulfate content on the interaction with xyloglucan, Cellulose, 22, 1773, 10.1007/s10570-015-0626-y
Winter, 2010, Improved Colloidal Stability of Bacterial Cellulose Nanocrystal Suspensions for the Elaboration of Spin-Coated Cellulose-Based Model Surfaces, Biomacromolecules, 11, 3144, 10.1021/bm100953f
Roman, 2004, Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose, Biomacromolecules, 5, 1671, 10.1021/bm034519+
Zimmerman, 2004, Cellulose fibrils for polymer reinforcement, Adv. Eng. Mater., 6, 754, 10.1002/adem.200400097
Li, 2016, Facile extraction of cellulose nanocrystals from wood using ethanol and peroxide solvothermal pretreatment followed by ultrasonic nanofibrillation, Green Chem., 18, 1010, 10.1039/C5GC02576A
Ahola, 2008, Enzymatic Hydrolysis of Native Cellulose Nanofibrils and Other Cellulose Model Films: Effect of Surface Structure, Langmuir, 24, 11592, 10.1021/la801550j
Himmel, 2007, Biomass recalcitrance: engineering plants and enzymes for biofuels production, Science, 315, 804, 10.1126/science.1137016
Sild, 1999, Acid hydrolysis of bacterial cellulose reveals different modes of synergistic action between cellobiohydrolase I and endoglucanase I, Eur. J. Biochem., 266, 327, 10.1046/j.1432-1327.1999.00853.x
Rabinovich, 2002, The structure and mechanism of action of cellulolytic enzymes, Biochem. (Mosc), 67, 850, 10.1023/A:1019958419032
Jeoh, 2010, Molecular-scale investigations of cellulose microstructure during enzymatic hydrolysis, Biomacromolecules, 11, 2000, 10.1021/bm100366h
Domingues, 2016, Interfacial properties of cellulose nanoparticles obtained from acid and enzymatic hydrolysis of cellulose, Cellulose, 23, 2421, 10.1007/s10570-016-0965-3
Rovera, 2018, Enzymatic Hydrolysis in the Green Production of Bacterial Cellulose Nanocrystals, ACS Sustain. Chem. Eng., 6, 7725, 10.1021/acssuschemeng.8b00600
Boisset, 2000, Imaging the Enzymatic Digestion of Bacterial Cellulose Ribbons Reveals the Endo Character of the Cellobiohydrolase Cel6A from Humicola insolens and Its Mode of Synergy with Cellobiohydrolase Cel7A, Appl. Environ. Microbiol., 66, 1444, 10.1128/AEM.66.4.1444-1452.2000
Xiang, 2017, The reinforcement mechanism of bacterial cellulose on paper made from woody and non-woody fiber sources, Cellulose, 24, 5147, 10.1007/s10570-017-1468-6
Xiang, 2017, Effects of physical and chemical structures of bacterial cellulose on its enhancement to paper physical properties, Cellulose, 24, 3513, 10.1007/s10570-017-1361-3
Zhang, M., Wu, X., Hu, Z., Xiang, Z., Song, T., and Lu, F. (2019). A Highly efficient and durable fluorescent paper produced from bacterial cellulose/Eu complex and cellulosic fibers. Nanomaterials, 9.
Mihranyan, 2011, Cellulose from Cladophorales Green Algae: From Environmental Problem to High-Tech Composite Materials, J. Appl. Polym. Sci., 119, 2449, 10.1002/app.32959
Nogi, 2006, Fiber-content dependency of the optical transparency and thermal expansion of bacterial nanofiber reinforced composites, Appl. Phys. Lett., 88, 133124, 10.1063/1.2191667
Gilkes, 1992, The adsorption of a bacterial cellulase and its two isolated domains to crystalline cellulose, J. Biol. Chem., 267, 6734, 10.1016/S0021-9258(19)50488-4
Wu, 1995, Size exclusion chromatography of cellulose and cellulose derivatives, Handbook of Size Exclusion Chromatography, Chromatographic Science Series, Volume 69, 331
Klemm, 2005, Cellulose: Fascinating biopolymer and sustainable raw material, Angew. Chem. Int. Ed., 44, 3358, 10.1002/anie.200460587
El Azm, N.A., Fleita, D., Rifaat, D., Mpingirika, E.Z., Amleh, A., and El-Sayed, M.M.H. (2019). Production of Bioactive Compounds from the Sulfated Polysaccharides Extracts of Ulva lactuca: Post-extraction Enzymatic Hydrolysis Followed by Ion-exchange Chromatographic Fractionation. Molecules, 24.
Czaja, 2004, Structural investigations of microbial cellulose produced in stationary and agitated culture, Cellulose, 11, 403, 10.1023/B:CELL.0000046412.11983.61
Nishiyama, 2008, The Shape and Size Distribution of Crystalline Nanoparticles Prepared by Acid Hydrolysis of Native Cellulose, Biomacromolecules, 9, 57, 10.1021/bm700769p
Wang, 2003, Preparation and properties of new regenerated cellulose fibers, Textile Res. J., 73, 998, 10.1177/004051750307301110
Anwar, 2015, Isolation of cellulose nanocrystals from bacterial cellulose produced from pineapple peel waste juice as culture medium, Procedia Chem., 16, 279, 10.1016/j.proche.2015.12.051
Rahmad, 2019, Synthesis of nano bacterial cellulose using acid hydrolysisultrasonication Treatment, J. Phys. Conf., 1185, 012028, 10.1088/1742-6596/1185/1/012028
Alloin, 2005, Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field, Biomacromolecules, 6, 612, 10.1021/bm0493685
Eichhorn, 2010, Review: Current international research into cellulose nanofibers and nanocomposites, J. Mater. Sci., 45, 1, 10.1007/s10853-009-3874-0
Juntaro, 2008, Creating Hierarchical Structures in Renewable Composites by Attaching Bacterial Cellulose onto Sisal Fibers, Adv. Mater., 20, 3122, 10.1002/adma.200703176
Vu, 2017, Environmentally benign green composites based on epoxy resin/bacterial cellulose reinforced glass fiber: Fabrication and mechanical characteristics, Polym. Test., 61, 150, 10.1016/j.polymertesting.2017.05.013
Phomrak, 2017, Reinforcement of Natural Rubber with Bacterial Cellulose via a Latex Aqueous Microdispersion Process, J. Nanomat., 2017, 4739793, 10.1155/2017/4739793
Wang, 2012, Bacterial Cellulose Nanofiber-Supported Polyaniline Nanocomposites with Flake-Shaped Morphology as Supercapacitor Electrodes, J. Phys. Chem. C, 116, 13013, 10.1021/jp301099r
Yang, 2011, Biotemplated preparation of CdS nanoparticles/bacterial cellulose hybrid nanofibers for photocatalysis application, J. Hazard. Mater., 189, 377, 10.1016/j.jhazmat.2011.02.048
George, 2011, Bacterial cellulose nanocrystals exhibiting high thermal stability and their polymer nanocomposites, Int. J. Biol. Macromol., 48, 50, 10.1016/j.ijbiomac.2010.09.013
Grunert, 2002, Nanocomposites of Cellulose Acetate Butyrate Reinforced with Cellulose Nanocrystals, J. Polym. Environ., 10, 27, 10.1023/A:1021065905986
Seoane, I.T., Manfredi, L.B., Cyras, V.P., Torre, L., Fortunati, E., and Puglia, D. (2017). Effect of Cellulose Nanocrystals and Bacterial Cellulose on Disintegrability in Composting Conditions of Plasticized PHB Nanocomposites. Polymers, 9.
Georgea, 2014, Hybrid HPMC nanocomposites containing bacterial cellulose nanocrystals and silver nanoparticles, Carbohydr. Polym., 105, 285, 10.1016/j.carbpol.2014.01.057
Pommet, 2008, Surface modification of natural fibers using bacteria: depositing bacterial cellulose onto natural fibers to create hierarchical fiber reinforced nanocomposites, Biomacromolecules, 9, 1643, 10.1021/bm800169g
Lee, 2012, Hierarchical composites reinforced with robust short sisal fibre preforms utilizing bacterial cellulose as binder, Compos. Sci. Technol., 72, 1479, 10.1016/j.compscitech.2012.06.014
Xu, 2013, Cellulose Nanocrystals vs. Cellulose Nanofibrils: A Comparative Study on Their Microstructures and Effects as Polymer Reinforcing Agents, ACS Appl. Mater. Interfaces, 5, 2999, 10.1021/am302624t
Ramsden, 1904, Separation of solids in the surface-layers of solutions and suspensions, Proc. R. Soc. Lond., 72, 156
Hu, 2015, Surfactant-enhanced cellulose nanocrystal Pickering emulsions, J. Colloid Interface Sci., 439, 139, 10.1016/j.jcis.2014.10.034
Fujisawa, 2017, Nanocellulose-stabilized Pickering emulsions and their applications, Sci. Technol. Adv. Mater., 18, 959, 10.1080/14686996.2017.1401423
Kalashnikova, 2011, New Pickering Emulsions Stabilized by Bacterial Cellulose Nanocrystals, Langmuir, 27, 7471, 10.1021/la200971f
Abend, 1998, Stabilization of emulsions by heterocoagulation of clay minerals and layered double hydroxides, Colloid Polym. Sci., 276, 730, 10.1007/s003960050303
Horozov, 2006, Particle-stabilized emulsions: A bilayer or abridging monolayer, Angew. Chem. Int. Ed., 45, 773, 10.1002/anie.200503131
Arditty, 2003, Some general features of limited coalescence in solid-stabilized emulsions, Eur. Phys. J. E, 11, 273, 10.1140/epje/i2003-10018-6
Binks, 1999, Stability of oil-in-water emulsions stabilised by silica particles, Phys. Chem. Chem. Phys., 1, 3007, 10.1039/a902209k
Yan, 2019, Entrapment of bacterial cellulose nanocrystals stabilized Pickering emulsions droplets in alginate beads for hydrophobic drug delivery, Colloids Surf. B, 177, 112, 10.1016/j.colsurfb.2019.01.057
Yan, 2017, Synthesis of bacterial cellulose and bacterial cellulose nanocrystals for their applications in the stabilization of olive oil pickering emulsion, Food Hydrocoll., 72, 127, 10.1016/j.foodhyd.2017.05.044
Lagaron, 2013, High-barrier coated bacterial cellulose nanowhiskers with reduced moisture sensitivity, Carbohydr. Polym., 98, 1072, 10.1016/j.carbpol.2013.07.020
Fabra, 2016, Improving the barrier properties of thermoplastic corn starch-based films containing bacterial cellulose nanowhiskers by means of PHA electrospun coatings of interest in food packaging, Food Hydrocoll., 61, 261, 10.1016/j.foodhyd.2016.05.025
Luk, 2000, Self-assembled monolayers of alkanethiolates presenting mannitol groups are inert to protein adsorption and cell attachment, Langmuir, 16, 9604, 10.1021/la0004653
McClary, 2000, Modulating fibroblast adhesion, spreading, and proliferation using selfassembled monolayer films of alkylthiolates on gold, J. Biomed. Mater. Res., 50, 428, 10.1002/(SICI)1097-4636(20000605)50:3<428::AID-JBM18>3.0.CO;2-H
Faucheux, 2004, Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies, Biomaterials, 25, 2721, 10.1016/j.biomaterials.2003.09.069
Belgacem, 2010, Recent advances in surface chemical modification of cellulose fibres, J. Adhes. Sci. Technol., 25, 661, 10.1163/016942410X525867
Andrade, 2010, Improving the affinity of fibroblasts for bacterial cellulose using carbohydrate-binding modules fused to RGD, J. Biomed. Mater. Res. A, 92, 9, 10.1002/jbm.a.32284
Cai, 2010, Bacterial cellulose/poly(ethylene glycol) composite: characterization and first evaluation of biocompatibility, Cellulose, 17, 83, 10.1007/s10570-009-9362-5
Curran, 2005, Controlling the phenotype and function of mesenchymal stem cells in vitro by adhesion to silane-modified clean glass surfaces, Biomaterials, 26, 7057, 10.1016/j.biomaterials.2005.05.008
Li, 2007, Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review, J. Polym. Environ., 15, 25, 10.1007/s10924-006-0042-3
Lee, 2009, Surface functionalization of bacterial cellulose as the route to produce green polylactide nanocomposites with improved properties, Compos. Sci. Technol., 69, 2724, 10.1016/j.compscitech.2009.08.016
Santos, 2017, Chemical modification of bacterial cellulose for use in regenerative medicine, Cellulose Chem. Technol., 51, 673
Rouabhia, 2014, Production of biocompatible and antimicrobial bacterial cellulose polymers functionalized by RGDC grafting groups and gentamicin, ACS Appl. Mater. Interfaces, 6, 1439, 10.1021/am4027983
Badshah, 2018, Surface modification and evaluation of bacterial cellulose for drug delivery, Int. J. Biol. Macromol., 113, 526, 10.1016/j.ijbiomac.2018.02.135
Pertile, 2010, Surface modification of bacterial cellulose by nitrogen-containing plasma for improved interaction with cells, Carbohydr. Polym., 82, 692, 10.1016/j.carbpol.2010.05.037
Helenius, 2006, Mechanical properties of bacterial cellulose and interactions withsmooth muscle cells, Biomaterials, 27, 2141, 10.1016/j.biomaterials.2005.10.026
Czaja, 2007, The future prospects ofmicrobial cellulose in biomedical applications, Biomacromolecules, 8, 1, 10.1021/bm060620d
Barud, 2015, Preparation and characterization of a bacterial cellulose/silk fibroin sponge scaffold for tissue regeneration, Carbohydr. Polym., 128, 41, 10.1016/j.carbpol.2015.04.007
Wang, J., Zhao, L., Zhang, A., Huang, Y., Tavakoli, J., and Tang, Y. (2018). Novel bacterial cellulose/gelatin hydrogels as 3D scaffolds for tumor cell culture. Polymers, 10.
Lin, 2013, Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing applications, Carbohydr. Polym., 94, 603, 10.1016/j.carbpol.2013.01.076
Pal, 2017, Silver-functionalized bacterial cellulose as antibacterial membrane for wound healing applications, ACS Omega, 2, 3632, 10.1021/acsomega.7b00442
Katepetch, 2013, Formation of nanocrystalline ZnO particles into bacterial cellulose pellicle by ultrasonic-assisted in situ synthesis, Cellulose, 20, 1275, 10.1007/s10570-013-9892-8
Zhijiang, 2019, Soy protein nanoparticles modified bacterial cellulose electrospun nanofiber membrane scaffold by ultrasound-induced self-assembly technique: Characterization and cytocompatibility, Cellulose, 26, 6133, 10.1007/s10570-019-02513-x