The Multipoint Initial–Final Value Condition for the Hoff Equations on Geometrical Graph in Spaces of $$\mathbf{K}$$ -“noises”
Tóm tắt
We consider a linear stochastic Sobolev type equation with relatively p-bounded operator and formulate a multipoint initial–final value condition for the equation. In addition, we prove a theorem on the existence of a unique solution to this problem in the space of
$$\mathbf{K}$$
-“noises”. Abstract results are used to study a specific multipoint initial–final value problem for linear stochastic Hoff equations on a geometric graph. The model describes the movement of a construction of some I-beams that moves in near-Earth space under random effects. The initial–final value condition require that the projections of the construction onto the surface of the Earth are specified at certain points in time.
Tài liệu tham khảo
Sviridyuk, G.A., Zagrebina, S.A., Konkina, A.S.: The Oskolkov equations on the geometric graphs as a mathematical model of the traffic flow. Bull. S. Ural State Univ. Ser. Math. Model. Program. Comput. Softw. 8(3), 148–154 (2015)
Hoff, N.J.: Creep buckling. Aeronaut. Q. 7(1), 1–20 (1956)
Favini, A., Zagrebina, S.A., Sviridyuk, G.A.: Multipoint initial-final value problems for dynamical Sobolev-type equations in the space of noises. Electron. J. Differ. Equ. 2018(128) (2018). https://ejde.math.txstate.edu/
Zagrebina, S.A., Soldatova, E.A.: The Hoff equations on a graph with the multipoint initial-final value condition. J. Comput. Eng. Math. 6(2), 54–63 (2019)
Sviridyuk, G.A., Manakova, N.A.: The dynamical models of Sobolev type with showalter—Sidorov condition and additive “noise’’. Bull. S. Ural State Univ. Ser. Math. Model. Program. Comput. Softw. 7(1), 90–103 (2014). https://doi.org/10.14529/mmp140108
Favini, A., Sviridyuk, G.A., Zamyshlyaeva, A.A.: One class of Sobolev type equation of higher order with additive “white noise’’. Commun. Pure Appl. Anal. Am. Inst. Math. Sci. 15(1), 185–196 (2016). https://doi.org/10.3934/cpaa.2016.15.185
Favini, A., Sviridyuk, G., Sagadeeva, M.: Linear Sobolev type equations with relatively \(p\)-radial operators in space of “noises’’. Mediterr. J. Math. 13(6), 4607–4621 (2016). https://doi.org/10.1007/s00009-016-0765-x
Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (1992)
Kovacs M., Larsson S.: Introduction to stochastic partial differential equations. In: Proceedings of “New Directions in the Mathematical and Computer Sciences”, National Universities Commission, Abuja, Nigeria, October 8–12, 2007, vol. 4, pp. 159–232. Publications of the ICMCS, Lagos (2008)
Zagrebina, S.A., Soldatova, E.A., Sviridyuk, G.A.: The stochastic linear Oskolkov model of the oil transportation by the pipeline. Springer Proc. Math. Stat. 113, 317–325 (2015). https://doi.org/10.1007/978-3-319-12145-1-20
Soldatova, E.A.: The initial-final value problem for the linear stochastic Hoff model. Bull. S. Ural State Univ. Ser. Math. Model. Program. Comput. Softw. 7(2), 124–128 (2014). https://doi.org/10.14529/mmp140212(in Russian)
Zamyshlyaeva, A.A., Sviridyuk, G.A.: The linearized Benney–Luke mathematical model with additive white noise. Springer Proc. Math. Stat. 113, 327–337 (2015). https://doi.org/10.1007/978-3-319-12145-1_21
Melnikova, I.V., Filinkov, A.I., Anufrieva, U.A.: Abstract stochastic equations I. Classical and distributional solutions. J. Math. Sci. 111(2), 3430–3475 (2002). https://doi.org/10.1023/A:1016006127598
Melnikova, I.V., Filinkov, A.I., Alshansky, M.A.: Abstract stochastic equations II. Solutions in spaces of abstract stochastic distributions. J. Math. Sci. 116(5), 3620–3656 (2003). https://doi.org/10.1023/A:1024159908410
Nelson, E.: Dynamical Theory of Brownian Motion. Princeton University Press, Princeton (1967)
Gliklikh, Yu.E.: Global and Stochastic Analysis with Applications to Mathematical Physics. Springer, London (2011). https://doi.org/10.1007/978-0-85729-163-9
Gliklikh, Yu.E., Mashkov, E Yu.: Stochastic Leontieff type equations and mean derivatives of stochastic processes. Bull. S. Ural State Univ. Ser. Math. Model. Program. Comput. Softw. 6(2), 25–39 (2013)
Shafranov, D.E., Kitaeva, O.G.: The Barenblatt–Zheltov–Kochina model with the Showalter–Sidorov condition and additive “white noise’’ in spaces of differential forms on Riemannian manifolds without boundary. Glob. Stoch. Anal. 5(2), 145–159 (2018)
Manakova, N.A., Dylkov, A.G.: Optimal control of the solutions of the initial-finish problem for the linear Hoff model. Math. Notes. 94(2), 220–230 (2013). https://doi.org/10.1134/S0001434613070225
Bayazitova, A.A.: On the generalized boundary-value problem for linear Sobolev type equations on the geometric graph. Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz. 10(3), 5–11 (2018). https://doi.org/10.14529/mmph180301