The Mouse Gastrointestinal Bacteria Catalogue enables translation between the mouse and human gut microbiotas via functional mapping
Tài liệu tham khảo
Aitchison, 1992, On criteria for measures of compositional difference, Math. Geol., 24, 365, 10.1007/BF00891269
Almeida, 2019, A new genomic blueprint of the human gut microbiota, Nature, 568, 499, 10.1038/s41586-019-0965-1
Almeida, 2021, A unified catalog of 204,938 reference genomes from the human gut microbiome, Nat. Biotechnol., 39, 105, 10.1038/s41587-020-0603-3
Alneberg, 2014, Binning metagenomic contigs by coverage and composition, Nat. Methods, 11, 1144, 10.1038/nmeth.3103
Aluthge, 2020, Differential longitudinal establishment of human fecal bacterial communities in germ-free porcine and murine models, Commun. Biol., 3, 760, 10.1038/s42003-020-01477-0
Armour, 2019, A metagenomic meta-analysis reveals functional signatures of health and disease in the human gut microbiome, mSystems, 4, 10.1128/mSystems.00332-18
Ashburner, 2000, Gene ontology: tool for the unification of biology. The Gene Ontology Consortium, Nat. Genet., 25, 25, 10.1038/75556
Atarashi, 2011, Induction of colonic regulatory T cells by indigenous Clostridium species, Science, 331, 337, 10.1126/science.1198469
Baker, 2016, 1,500 Scientists lift the lid on reproducibility, Nature, 533, 452, 10.1038/533452a
Boetzer, 2011, Scaffolding pre-assembled contigs using SSPACE, Bioinformatics, 27, 578, 10.1093/bioinformatics/btq683
Boetzer, 2012, Toward almost closed genomes with GapFiller, Genome Biol, 13, R56, 10.1186/gb-2012-13-6-r56
Bowers, 2017, Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea, Nat. Biotechnol., 35, 725, 10.1038/nbt.3893
Brown, 2015, Unusual biology across a group comprising more than 15% of domain Bacteria, Nature, 523, 208, 10.1038/nature14486
Browne, 2016, Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation, Nature, 533, 543, 10.1038/nature17645
Buffie, 2015, Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile, Nature, 517, 205, 10.1038/nature13828
Camacho, 2009, Blast+: architecture and applications, BMC Bioinformatics, 10, 421, 10.1186/1471-2105-10-421
Carlsson, 2013, Faecalibacterium prausnitzii supernatant improves intestinal barrier function in mice DSS colitis, Scand. J. Gastroenterol., 48, 1136, 10.3109/00365521.2013.828773
Caspani, 2019, Gut microbial metabolites in depression: understanding the biochemical mechanisms, Microb. Cell, 6, 454, 10.15698/mic2019.10.693
Caspi, 2016, The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases, Nucleic Acids Res, 44, D471, 10.1093/nar/gkv1164
Chaumeil, 2019, GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database, Bioinformatics, 36, 1925, 10.1093/bioinformatics/btz848
Chen, 2021, A microbiota-directed food intervention for undernourished children, N. Engl. J. Med., 384, 1517, 10.1056/NEJMoa2023294
Chung, 2012, Gut immune maturation depends on colonization with a host-specific microbiota, Cell, 149, 1578, 10.1016/j.cell.2012.04.037
Collins, 2020, The gut microbiome: an orchestrator of xenobiotic metabolism, Acta Pharm. Sin. B, 10, 19, 10.1016/j.apsb.2019.12.001
Cross, 2019, Targeted isolation and cultivation of uncultivated bacteria by reverse genomics, Nat. Biotechnol., 37, 1314, 10.1038/s41587-019-0260-6
Cryan, 2020, The gut microbiome in neurological disorders, Lancet Neurol, 19, 179, 10.1016/S1474-4422(19)30356-4
Donohoe, 2011, The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon, Cell Metab, 13, 517, 10.1016/j.cmet.2011.02.018
Duncan, 2002, Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov, Int. J. Syst. Evol. Microbiol., 52, 2141
Forster, 2021, Novel gut pathobionts confound results in a widely used mouse model of human inflammatory disease, bioRxiv
Forster, 2019, A human gut bacterial genome and culture collection for improved metagenomic analyses, Nat. Biotechnol., 37, 186, 10.1038/s41587-018-0009-7
Furusawa, 2013, Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells, Nature, 504, 446, 10.1038/nature12721
Haiser, 2013, Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta, Science, 341, 295, 10.1126/science.1235872
Harrison, 2021, The European Nucleotide Archive in 2020, Nucleic Acids Res, 49, D82, 10.1093/nar/gkaa1028
Huerta-Cepas, 2017, Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper, Mol. Biol. Evol., 34, 2115, 10.1093/molbev/msx148
Huerta-Cepas, 2019, eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses, Nucleic Acids Res, 47, D309, 10.1093/nar/gky1085
Jain, 2018, High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries, Nat. Commun., 9, 5114, 10.1038/s41467-018-07641-9
Jassal, 2020, The reactome pathway knowledgebase, Nucleic Acids Res, 48, D498
Johnson, 2008, NCBI BLAST: a better web interface, Nucleic Acids Res, 36, W5, 10.1093/nar/gkn201
Jones, 2014, InterProScan 5: genome-scale protein function classification, Bioinformatics, 30, 1236, 10.1093/bioinformatics/btu031
Kalyaanamoorthy, 2017, ModelFinder: fast model selection for accurate phylogenetic estimates, Nat. Methods, 14, 587, 10.1038/nmeth.4285
Kanehisa, 2017, KEGG: new perspectives on genomes, pathways, diseases and drugs, Nucleic Acids Res, 45, D353, 10.1093/nar/gkw1092
Kang, 2019, MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies, PeerJ, 7, 10.7717/peerj.7359
Kim, 2020, Human reference gut microbiome comprising 5,414 prokaryotic species, including newly assembled genomes from under-represented Asian metagenomes, bioRxiv
Lagier, 2016, Culture of previously uncultured members of the human gut microbiota by culturomics, Nat. Microbiol., 1, 16203, 10.1038/nmicrobiol.2016.203
Lagkouvardos, 2019, Sequence and cultivation study of Muribaculaceae reveals novel species, host preference, and functional potential of this yet undescribed family, Microbiome, 7, 28, 10.1186/s40168-019-0637-2
Lagkouvardos, 2016, The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota, Nat. Microbiol., 1, 16131, 10.1038/nmicrobiol.2016.131
Langmead, 2019, Scaling read aligners to hundreds of threads on general-purpose processors, Bioinformatics, 35, 421, 10.1093/bioinformatics/bty648
Lesker, 2020, An integrated metagenome catalog reveals new insights into the murine gut microbiome, Cell Rep, 30, 2909, 10.1016/j.celrep.2020.02.036
Letunic, 2021, Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation, Nucleic Acids Res, 49, W293, 10.1093/nar/gkab301
Li, 2018, The microbiome and autoimmunity: a paradigm from the gut–liver axis, Cell. Mol. Immunol., 15, 595, 10.1038/cmi.2018.7
Li, 2016, MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices, Methods, 102, 3, 10.1016/j.ymeth.2016.02.020
Li, 2014, An integrated catalog of reference genes in the human gut microbiome, Nat. Biotechnol., 32, 834, 10.1038/nbt.2942
Libertucci, 2019, The role of the microbiota in infectious diseases, Nat. Microbiol., 4, 35, 10.1038/s41564-018-0278-4
Liu, 2020, The Mouse Gut Microbial Biobank expands the coverage of cultured bacteria, Nat. Commun., 11, 79, 10.1038/s41467-019-13836-5
Lombard, 2014, The carbohydrate-active enzymes database (CAZy) in 2013, Nucleic Acids Res, 42, D490, 10.1093/nar/gkt1178
Louis, 2017, Formation of propionate and butyrate by the human colonic microbiota, Environ. Microbiol., 19, 29, 10.1111/1462-2920.13589
Lu, 2017, Bracken: estimating species abundance in metagenomics data, PeerJ Comput. Sci., 3, e104, 10.7717/peerj-cs.104
Lundberg, 2020, Human microbiota-transplanted C57BL/6 mice and offspring display reduced establishment of key bacteria and reduced immune stimulation compared to mouse microbiota-transplantation, Sci. Rep., 10, 7805, 10.1038/s41598-020-64703-z
Maini Rekdal, 2019, Discovery and inhibition of an interspecies gut bacterial pathway for levodopa metabolism, Science, 364, eaau6323, 10.1126/science.aau6323
Martín-Fernández, 2015, Bayesian-multiplicative treatment of count zeros in compositional data sets, Stat. Modell., 15, 134, 10.1177/1471082X14535524
Meziti, 2021, The reliability of metagenome-assembled genomes (MAGs) in representing natural populations: insights from comparing MAGs against isolate genomes derived from the same fecal sample, Appl. Environ. Microbiol., 87, e02593
Nayfach, 2019, New insights from uncultivated genomes of the global human gut microbiome, Nature, 568, 505, 10.1038/s41586-019-1058-x
Neville, 2018, Commensal Koch’s postulates: establishing causation in human microbiota research, Curr. Opin. Microbiol., 42, 47, 10.1016/j.mib.2017.10.001
Nguyen, 2015, IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies, Mol. Biol. Evol., 32, 268, 10.1093/molbev/msu300
Nielsen, 2014, Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes, Nat. Biotechnol., 32, 822, 10.1038/nbt.2939
Nurk, 2017, metaSPAdes: a new versatile metagenomic assembler, Genome Res, 27, 824, 10.1101/gr.213959.116
O’Leary, 2016, Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation, Nucleic Acids Res, 44, D733, 10.1093/nar/gkv1189
Oksanen, 2014
Olm, 2017, dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication, ISME J, 11, 2864, 10.1038/ismej.2017.126
Ondov, 2016, Mash: fast genome and metagenome distance estimation using MinHash, Genome Biol, 17, 132, 10.1186/s13059-016-0997-x
Orakov, 2021, GUNC: detection of chimerism and contamination in prokaryotic genomes, Genome Biol, 22, 178, 10.1186/s13059-021-02393-0
Page, 2016, Robust high-throughput prokaryote de novo assembly and improvement pipeline for Illumina data, Microb. Genomics, 2, 10.1099/mgen.0.000083
Palarea-Albaladejo, 2015, zCompositions — R package for multivariate imputation of left-censored data under a compositional approach, Chemom. Intell. Lab. Syst., 143, 85, 10.1016/j.chemolab.2015.02.019
Parada Venegas, 2019, Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases, Front. Immunol., 10, 277, 10.3389/fimmu.2019.00277
Paradis, 2019, ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R, Bioinformatics, 35, 526, 10.1093/bioinformatics/bty633
Park, 2020, Of men in mice: the development and application of a humanized gnotobiotic mouse model for microbiome therapeutics, Exp. Mol. Med., 52, 1383, 10.1038/s12276-020-0473-2
Parks, 2020, A complete domain-to-species taxonomy for Bacteria and Archaea, Nat. Biotechnol., 38, 1079, 10.1038/s41587-020-0501-8
Parks, 2018, A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life, Nat. Biotechnol., 36, 996, 10.1038/nbt.4229
Parks, 2015, CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes, Genome Res, 25, 1043, 10.1101/gr.186072.114
Parks, 2017, Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life, Nat. Microbiol., 2, 1533, 10.1038/s41564-017-0012-7
Pasolli, 2019, Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle, Cell, 176, 649, 10.1016/j.cell.2019.01.001
Pedron, 2019, Genomic and metagenomic insights into the microbial community of a thermal spring, Microbiome, 7, 8, 10.1186/s40168-019-0625-6
Poyet, 2019, A library of human gut bacterial isolates paired with longitudinal multiomics data enables mechanistic microbiome research, Nat. Med., 25, 1442, 10.1038/s41591-019-0559-3
Price, 2010, FastTree 2 – approximately maximum-likelihood trees for large alignments, PLoS One, 5, 10.1371/journal.pone.0009490
Qin, 2010, A human gut microbial gene catalogue established by metagenomic sequencing, Nature, 464, 59, 10.1038/nature08821
R Core Team, 2020, R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria
Richardson, 2019, Genome properties in 2019: a new companion database to InterPro for the inference of complete functional attributes, Nucleic Acids Res, 47, D564, 10.1093/nar/gky1013
Ridlon, 2013, Clostridium scindens: a human gut microbe with a high potential to convert glucocorticoids into androgens, J. Lipid Res., 54, 2437, 10.1194/jlr.M038869
Rosshart, 2019, Laboratory mice born to wild mice have natural microbiota and model human immune responses, Science, 365, eaaw4361, 10.1126/science.aaw4361
Rosshart, 2017, Wild mouse gut microbiota promotes host fitness and improves disease resistance, Cell, 171, 1015, 10.1016/j.cell.2017.09.016
Schloss, 2009, Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities, Appl. Environ. Microbiol., 75, 7537, 10.1128/AEM.01541-09
Seemann, 2014, Prokka: rapid prokaryotic genome annotation, Bioinformatics, 30, 2068, 10.1093/bioinformatics/btu153
Shaiber, 2019, Composite metagenome-assembled genomes reduce the quality of public genome repositories, mBio, 10, 10.1128/mBio.00725-19
Silva, 2020, The role of short-chain fatty acids from gut microbiota in gut-brain communication, Front. Endocrinol., 11, 25, 10.3389/fendo.2020.00025
Sokol, 2008, Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients, Proc. Natl. Acad. Sci. U. S. A., 105, 16731, 10.1073/pnas.0804812105
Sonnenburg, 2016, Diet–microbiota interactions as moderators of human metabolism, Nature, 535, 56, 10.1038/nature18846
Sorbara, 2020, Functional and genomic variation between human-derived isolates of Lachnospiraceae reveals inter- and intra-species diversity, Cell Host Microbe, 28, 134, 10.1016/j.chom.2020.05.005
Stappenbeck, 2016, Accounting for reciprocal host–microbiome interactions in experimental science, Nature, 534, 191, 10.1038/nature18285
Steinegger, 2017, MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets, Nat. Biotechnol., 35, 1026, 10.1038/nbt.3988
Steinegger, 2018, Clustering huge protein sequence sets in linear time, Nat. Commun., 9, 2542, 10.1038/s41467-018-04964-5
Surana, 2017, Moving beyond microbiome-wide associations to causal microbe identification, Nature, 552, 244, 10.1038/nature25019
Szentirmai, 2019, Butyrate, a metabolite of intestinal bacteria, enhances sleep, Sci. Rep., 9, 7035, 10.1038/s41598-019-43502-1
Thomas, 2019, Multiple levels of the unknown in microbiome research, BMC Biol, 17, 48, 10.1186/s12915-019-0667-z
Tonkin-Hill, 2020, Producing polished prokaryotic pangenomes with the Panaroo pipeline, Genome Biol, 21, 180, 10.1186/s13059-020-02090-4
Consortium, 2021, UniProt: the universal protein KnowledgeBase in 2021, Nucleic Acids Res, 49, D480, 10.1093/nar/gkaa1100
Uritskiy, 2018, MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis, Microbiome, 6, 158, 10.1186/s40168-018-0541-1
Varghese, 2015, Microbial species delineation using whole genome sequences, Nucleic Acids Res, 43, 6761, 10.1093/nar/gkv657
Wood, 2019, Improved metagenomic analysis with Kraken 2, Genome Biol, 20, 257, 10.1186/s13059-019-1891-0
Wu, 2016, MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets, Bioinformatics, 32, 605, 10.1093/bioinformatics/btv638
Xiao, 2015, A catalog of the mouse gut metagenome, Nat. Biotechnol., 33, 1103, 10.1038/nbt.3353
Zerbino, 2008, Velvet: algorithms for de novo short read assembly using de Bruijn graphs, Genome Res, 18, 821, 10.1101/gr.074492.107
Zhu, 2021, An expanded gene catalog of mouse gut metagenomes, mSphere, 6, e01119, 10.1128/mSphere.01119-20
Zimmermann, 2019, Mapping human microbiome drug metabolism by gut bacteria and their genes, Nature, 570, 462, 10.1038/s41586-019-1291-3
Zimmermann, 2019, Separating host and microbiome contributions to drug pharmacokinetics and toxicity, Science, 363, 10.1126/science.aat9931
Zou, 2019, 1,520 Reference genomes from cultivated human gut bacteria enable functional microbiome analyses, Nat. Biotechnol., 37, 179, 10.1038/s41587-018-0008-8