The Mouse Gastrointestinal Bacteria Catalogue enables translation between the mouse and human gut microbiotas via functional mapping

Cell Host & Microbe - Tập 30 - Trang 124-138.e8 - 2022
Benjamin S. Beresford-Jones1,2, Samuel C. Forster3, Mark D. Stares3, George Notley3, Elisa Viciani3, Hilary P. Browne3, Daniel J. Boehmler4, Amelia T. Soderholm1,2, Nitin Kumar3, Kevin Vervier3, Justin R. Cross4, Alexandre Almeida3,5, Trevor D. Lawley3, Virginia A. Pedicord1,2
1Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
2Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
3Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
4Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
5European Bioinformatics Institute, EMBL-EBI, Wellcome Genome Campus, Hinxton, UK

Tài liệu tham khảo

Aitchison, 1992, On criteria for measures of compositional difference, Math. Geol., 24, 365, 10.1007/BF00891269 Almeida, 2019, A new genomic blueprint of the human gut microbiota, Nature, 568, 499, 10.1038/s41586-019-0965-1 Almeida, 2021, A unified catalog of 204,938 reference genomes from the human gut microbiome, Nat. Biotechnol., 39, 105, 10.1038/s41587-020-0603-3 Alneberg, 2014, Binning metagenomic contigs by coverage and composition, Nat. Methods, 11, 1144, 10.1038/nmeth.3103 Aluthge, 2020, Differential longitudinal establishment of human fecal bacterial communities in germ-free porcine and murine models, Commun. Biol., 3, 760, 10.1038/s42003-020-01477-0 Armour, 2019, A metagenomic meta-analysis reveals functional signatures of health and disease in the human gut microbiome, mSystems, 4, 10.1128/mSystems.00332-18 Ashburner, 2000, Gene ontology: tool for the unification of biology. The Gene Ontology Consortium, Nat. Genet., 25, 25, 10.1038/75556 Atarashi, 2011, Induction of colonic regulatory T cells by indigenous Clostridium species, Science, 331, 337, 10.1126/science.1198469 Baker, 2016, 1,500 Scientists lift the lid on reproducibility, Nature, 533, 452, 10.1038/533452a Boetzer, 2011, Scaffolding pre-assembled contigs using SSPACE, Bioinformatics, 27, 578, 10.1093/bioinformatics/btq683 Boetzer, 2012, Toward almost closed genomes with GapFiller, Genome Biol, 13, R56, 10.1186/gb-2012-13-6-r56 Bowers, 2017, Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea, Nat. Biotechnol., 35, 725, 10.1038/nbt.3893 Brown, 2015, Unusual biology across a group comprising more than 15% of domain Bacteria, Nature, 523, 208, 10.1038/nature14486 Browne, 2016, Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation, Nature, 533, 543, 10.1038/nature17645 Buffie, 2015, Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile, Nature, 517, 205, 10.1038/nature13828 Camacho, 2009, Blast+: architecture and applications, BMC Bioinformatics, 10, 421, 10.1186/1471-2105-10-421 Carlsson, 2013, Faecalibacterium prausnitzii supernatant improves intestinal barrier function in mice DSS colitis, Scand. J. Gastroenterol., 48, 1136, 10.3109/00365521.2013.828773 Caspani, 2019, Gut microbial metabolites in depression: understanding the biochemical mechanisms, Microb. Cell, 6, 454, 10.15698/mic2019.10.693 Caspi, 2016, The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases, Nucleic Acids Res, 44, D471, 10.1093/nar/gkv1164 Chaumeil, 2019, GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database, Bioinformatics, 36, 1925, 10.1093/bioinformatics/btz848 Chen, 2021, A microbiota-directed food intervention for undernourished children, N. Engl. J. Med., 384, 1517, 10.1056/NEJMoa2023294 Chung, 2012, Gut immune maturation depends on colonization with a host-specific microbiota, Cell, 149, 1578, 10.1016/j.cell.2012.04.037 Collins, 2020, The gut microbiome: an orchestrator of xenobiotic metabolism, Acta Pharm. Sin. B, 10, 19, 10.1016/j.apsb.2019.12.001 Cross, 2019, Targeted isolation and cultivation of uncultivated bacteria by reverse genomics, Nat. Biotechnol., 37, 1314, 10.1038/s41587-019-0260-6 Cryan, 2020, The gut microbiome in neurological disorders, Lancet Neurol, 19, 179, 10.1016/S1474-4422(19)30356-4 Donohoe, 2011, The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon, Cell Metab, 13, 517, 10.1016/j.cmet.2011.02.018 Duncan, 2002, Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov, Int. J. Syst. Evol. Microbiol., 52, 2141 Forster, 2021, Novel gut pathobionts confound results in a widely used mouse model of human inflammatory disease, bioRxiv Forster, 2019, A human gut bacterial genome and culture collection for improved metagenomic analyses, Nat. Biotechnol., 37, 186, 10.1038/s41587-018-0009-7 Furusawa, 2013, Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells, Nature, 504, 446, 10.1038/nature12721 Haiser, 2013, Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta, Science, 341, 295, 10.1126/science.1235872 Harrison, 2021, The European Nucleotide Archive in 2020, Nucleic Acids Res, 49, D82, 10.1093/nar/gkaa1028 Huerta-Cepas, 2017, Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper, Mol. Biol. Evol., 34, 2115, 10.1093/molbev/msx148 Huerta-Cepas, 2019, eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses, Nucleic Acids Res, 47, D309, 10.1093/nar/gky1085 Jain, 2018, High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries, Nat. Commun., 9, 5114, 10.1038/s41467-018-07641-9 Jassal, 2020, The reactome pathway knowledgebase, Nucleic Acids Res, 48, D498 Johnson, 2008, NCBI BLAST: a better web interface, Nucleic Acids Res, 36, W5, 10.1093/nar/gkn201 Jones, 2014, InterProScan 5: genome-scale protein function classification, Bioinformatics, 30, 1236, 10.1093/bioinformatics/btu031 Kalyaanamoorthy, 2017, ModelFinder: fast model selection for accurate phylogenetic estimates, Nat. Methods, 14, 587, 10.1038/nmeth.4285 Kanehisa, 2017, KEGG: new perspectives on genomes, pathways, diseases and drugs, Nucleic Acids Res, 45, D353, 10.1093/nar/gkw1092 Kang, 2019, MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies, PeerJ, 7, 10.7717/peerj.7359 Kim, 2020, Human reference gut microbiome comprising 5,414 prokaryotic species, including newly assembled genomes from under-represented Asian metagenomes, bioRxiv Lagier, 2016, Culture of previously uncultured members of the human gut microbiota by culturomics, Nat. Microbiol., 1, 16203, 10.1038/nmicrobiol.2016.203 Lagkouvardos, 2019, Sequence and cultivation study of Muribaculaceae reveals novel species, host preference, and functional potential of this yet undescribed family, Microbiome, 7, 28, 10.1186/s40168-019-0637-2 Lagkouvardos, 2016, The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota, Nat. Microbiol., 1, 16131, 10.1038/nmicrobiol.2016.131 Langmead, 2019, Scaling read aligners to hundreds of threads on general-purpose processors, Bioinformatics, 35, 421, 10.1093/bioinformatics/bty648 Lesker, 2020, An integrated metagenome catalog reveals new insights into the murine gut microbiome, Cell Rep, 30, 2909, 10.1016/j.celrep.2020.02.036 Letunic, 2021, Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation, Nucleic Acids Res, 49, W293, 10.1093/nar/gkab301 Li, 2018, The microbiome and autoimmunity: a paradigm from the gut–liver axis, Cell. Mol. Immunol., 15, 595, 10.1038/cmi.2018.7 Li, 2016, MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices, Methods, 102, 3, 10.1016/j.ymeth.2016.02.020 Li, 2014, An integrated catalog of reference genes in the human gut microbiome, Nat. Biotechnol., 32, 834, 10.1038/nbt.2942 Libertucci, 2019, The role of the microbiota in infectious diseases, Nat. Microbiol., 4, 35, 10.1038/s41564-018-0278-4 Liu, 2020, The Mouse Gut Microbial Biobank expands the coverage of cultured bacteria, Nat. Commun., 11, 79, 10.1038/s41467-019-13836-5 Lombard, 2014, The carbohydrate-active enzymes database (CAZy) in 2013, Nucleic Acids Res, 42, D490, 10.1093/nar/gkt1178 Louis, 2017, Formation of propionate and butyrate by the human colonic microbiota, Environ. Microbiol., 19, 29, 10.1111/1462-2920.13589 Lu, 2017, Bracken: estimating species abundance in metagenomics data, PeerJ Comput. Sci., 3, e104, 10.7717/peerj-cs.104 Lundberg, 2020, Human microbiota-transplanted C57BL/6 mice and offspring display reduced establishment of key bacteria and reduced immune stimulation compared to mouse microbiota-transplantation, Sci. Rep., 10, 7805, 10.1038/s41598-020-64703-z Maini Rekdal, 2019, Discovery and inhibition of an interspecies gut bacterial pathway for levodopa metabolism, Science, 364, eaau6323, 10.1126/science.aau6323 Martín-Fernández, 2015, Bayesian-multiplicative treatment of count zeros in compositional data sets, Stat. Modell., 15, 134, 10.1177/1471082X14535524 Meziti, 2021, The reliability of metagenome-assembled genomes (MAGs) in representing natural populations: insights from comparing MAGs against isolate genomes derived from the same fecal sample, Appl. Environ. Microbiol., 87, e02593 Nayfach, 2019, New insights from uncultivated genomes of the global human gut microbiome, Nature, 568, 505, 10.1038/s41586-019-1058-x Neville, 2018, Commensal Koch’s postulates: establishing causation in human microbiota research, Curr. Opin. Microbiol., 42, 47, 10.1016/j.mib.2017.10.001 Nguyen, 2015, IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies, Mol. Biol. Evol., 32, 268, 10.1093/molbev/msu300 Nielsen, 2014, Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes, Nat. Biotechnol., 32, 822, 10.1038/nbt.2939 Nurk, 2017, metaSPAdes: a new versatile metagenomic assembler, Genome Res, 27, 824, 10.1101/gr.213959.116 O’Leary, 2016, Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation, Nucleic Acids Res, 44, D733, 10.1093/nar/gkv1189 Oksanen, 2014 Olm, 2017, dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication, ISME J, 11, 2864, 10.1038/ismej.2017.126 Ondov, 2016, Mash: fast genome and metagenome distance estimation using MinHash, Genome Biol, 17, 132, 10.1186/s13059-016-0997-x Orakov, 2021, GUNC: detection of chimerism and contamination in prokaryotic genomes, Genome Biol, 22, 178, 10.1186/s13059-021-02393-0 Page, 2016, Robust high-throughput prokaryote de novo assembly and improvement pipeline for Illumina data, Microb. Genomics, 2, 10.1099/mgen.0.000083 Palarea-Albaladejo, 2015, zCompositions — R package for multivariate imputation of left-censored data under a compositional approach, Chemom. Intell. Lab. Syst., 143, 85, 10.1016/j.chemolab.2015.02.019 Parada Venegas, 2019, Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases, Front. Immunol., 10, 277, 10.3389/fimmu.2019.00277 Paradis, 2019, ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R, Bioinformatics, 35, 526, 10.1093/bioinformatics/bty633 Park, 2020, Of men in mice: the development and application of a humanized gnotobiotic mouse model for microbiome therapeutics, Exp. Mol. Med., 52, 1383, 10.1038/s12276-020-0473-2 Parks, 2020, A complete domain-to-species taxonomy for Bacteria and Archaea, Nat. Biotechnol., 38, 1079, 10.1038/s41587-020-0501-8 Parks, 2018, A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life, Nat. Biotechnol., 36, 996, 10.1038/nbt.4229 Parks, 2015, CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes, Genome Res, 25, 1043, 10.1101/gr.186072.114 Parks, 2017, Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life, Nat. Microbiol., 2, 1533, 10.1038/s41564-017-0012-7 Pasolli, 2019, Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle, Cell, 176, 649, 10.1016/j.cell.2019.01.001 Pedron, 2019, Genomic and metagenomic insights into the microbial community of a thermal spring, Microbiome, 7, 8, 10.1186/s40168-019-0625-6 Poyet, 2019, A library of human gut bacterial isolates paired with longitudinal multiomics data enables mechanistic microbiome research, Nat. Med., 25, 1442, 10.1038/s41591-019-0559-3 Price, 2010, FastTree 2 – approximately maximum-likelihood trees for large alignments, PLoS One, 5, 10.1371/journal.pone.0009490 Qin, 2010, A human gut microbial gene catalogue established by metagenomic sequencing, Nature, 464, 59, 10.1038/nature08821 R Core Team, 2020, R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria Richardson, 2019, Genome properties in 2019: a new companion database to InterPro for the inference of complete functional attributes, Nucleic Acids Res, 47, D564, 10.1093/nar/gky1013 Ridlon, 2013, Clostridium scindens: a human gut microbe with a high potential to convert glucocorticoids into androgens, J. Lipid Res., 54, 2437, 10.1194/jlr.M038869 Rosshart, 2019, Laboratory mice born to wild mice have natural microbiota and model human immune responses, Science, 365, eaaw4361, 10.1126/science.aaw4361 Rosshart, 2017, Wild mouse gut microbiota promotes host fitness and improves disease resistance, Cell, 171, 1015, 10.1016/j.cell.2017.09.016 Schloss, 2009, Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities, Appl. Environ. Microbiol., 75, 7537, 10.1128/AEM.01541-09 Seemann, 2014, Prokka: rapid prokaryotic genome annotation, Bioinformatics, 30, 2068, 10.1093/bioinformatics/btu153 Shaiber, 2019, Composite metagenome-assembled genomes reduce the quality of public genome repositories, mBio, 10, 10.1128/mBio.00725-19 Silva, 2020, The role of short-chain fatty acids from gut microbiota in gut-brain communication, Front. Endocrinol., 11, 25, 10.3389/fendo.2020.00025 Sokol, 2008, Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients, Proc. Natl. Acad. Sci. U. S. A., 105, 16731, 10.1073/pnas.0804812105 Sonnenburg, 2016, Diet–microbiota interactions as moderators of human metabolism, Nature, 535, 56, 10.1038/nature18846 Sorbara, 2020, Functional and genomic variation between human-derived isolates of Lachnospiraceae reveals inter- and intra-species diversity, Cell Host Microbe, 28, 134, 10.1016/j.chom.2020.05.005 Stappenbeck, 2016, Accounting for reciprocal host–microbiome interactions in experimental science, Nature, 534, 191, 10.1038/nature18285 Steinegger, 2017, MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets, Nat. Biotechnol., 35, 1026, 10.1038/nbt.3988 Steinegger, 2018, Clustering huge protein sequence sets in linear time, Nat. Commun., 9, 2542, 10.1038/s41467-018-04964-5 Surana, 2017, Moving beyond microbiome-wide associations to causal microbe identification, Nature, 552, 244, 10.1038/nature25019 Szentirmai, 2019, Butyrate, a metabolite of intestinal bacteria, enhances sleep, Sci. Rep., 9, 7035, 10.1038/s41598-019-43502-1 Thomas, 2019, Multiple levels of the unknown in microbiome research, BMC Biol, 17, 48, 10.1186/s12915-019-0667-z Tonkin-Hill, 2020, Producing polished prokaryotic pangenomes with the Panaroo pipeline, Genome Biol, 21, 180, 10.1186/s13059-020-02090-4 Consortium, 2021, UniProt: the universal protein KnowledgeBase in 2021, Nucleic Acids Res, 49, D480, 10.1093/nar/gkaa1100 Uritskiy, 2018, MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis, Microbiome, 6, 158, 10.1186/s40168-018-0541-1 Varghese, 2015, Microbial species delineation using whole genome sequences, Nucleic Acids Res, 43, 6761, 10.1093/nar/gkv657 Wood, 2019, Improved metagenomic analysis with Kraken 2, Genome Biol, 20, 257, 10.1186/s13059-019-1891-0 Wu, 2016, MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets, Bioinformatics, 32, 605, 10.1093/bioinformatics/btv638 Xiao, 2015, A catalog of the mouse gut metagenome, Nat. Biotechnol., 33, 1103, 10.1038/nbt.3353 Zerbino, 2008, Velvet: algorithms for de novo short read assembly using de Bruijn graphs, Genome Res, 18, 821, 10.1101/gr.074492.107 Zhu, 2021, An expanded gene catalog of mouse gut metagenomes, mSphere, 6, e01119, 10.1128/mSphere.01119-20 Zimmermann, 2019, Mapping human microbiome drug metabolism by gut bacteria and their genes, Nature, 570, 462, 10.1038/s41586-019-1291-3 Zimmermann, 2019, Separating host and microbiome contributions to drug pharmacokinetics and toxicity, Science, 363, 10.1126/science.aat9931 Zou, 2019, 1,520 Reference genomes from cultivated human gut bacteria enable functional microbiome analyses, Nat. Biotechnol., 37, 179, 10.1038/s41587-018-0008-8