The Modular Isomorphism Problem: A Survey
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bagiński, C.: The isomorphism question for modular group algebras of metacyclic $p$-groups. Proc. Am. Math. Soc. 104(1), 39–42 (1988)
Bagiński, C.: Modular group algebras of 2-groups of maximal class. Commun. Algebra 20(5), 1229–1241 (1992)
Bagiński, C.: On the isomorphism problem for modular group algebras of elementary Abelian-by-cyclic $p$-groups. Colloq. Math. 82(1), 125–136 (1999)
Bagiński, C., Caranti, A.: The modular group algebras of $p$-groups of maximal class. Can. J. Math. 40(6), 1422–1435 (1988)
Bagiński, C., Konovalov, A.: On 2-groups of almost maximal class. Publ. Math. (Debr.) 65(1–2), 97–131 (2004)
Bagiński, C., Konovalov, A.: The modular isomorphism problem for finite $p$-groups with a cyclic subgroup of index $p^{2}$. In: Groups St. Andrews 2005. Vol. 1. London Math. Soc. Lecture Note Ser., vol. 339, pp. 186–193. Cambridge University Press, Cambridge (2007)
Bagiński, C., Kurdics, J.: The modular group algebras of $p$-groups of maximal class II. Commun. Algebra 47(2), 761–771 (2019)
Balogh, Z., Bovdi, A.A.: Group algebras with unit group of class $p$. Publ. Math. (Debr.) 65(3–4), 261–268 (2004)
Balogh, Z., Bovdi, V.: The isomorphism problem of unitary subgroups of modular group algebras. Publ. Math. (Debr.) 97(1–2), 27–39 (2020)
Bartholdi, L., Mikhailov, R.: Group and Lie algebra filtrations and homotopy groups of spheres (2018). arXiv:1805.10894
Benson, D.J.: Representations and Cohomology. I: Basic Representation Theory of Finite Groups and Associative Algebras. Cambridge Studies in Advanced Mathematics, vol. 30. Cambridge University Press, Cambridge (1991)
Benson, D.J.: Representations and Cohomology. II: Cohomology of Groups and Modules, 2nd edn. Cambridge Studies in Advanced Mathematics, vol. 31. Cambridge University Press, Cambridge (1998)
Benson, D., Kessar, R., Linckelmann, M.: On the BV structure of the Hochschild cohomology of finite group algebras. Pac. J. Math. 313(1), 1–44 (2021)
Berman, S.D.: On certain properties of group rings over the field of rational numbers. Užgorod. Gos. Univ. Naučn. Zap. Him. Fiz. Mat. 12, 88–110 (1955)
Berman, S.D.: On the equation $x^{m}=1$ in an integral group ring. Ukr. Mat. Ž. 7, 253–261 (1955)
Berman, S.D.: Group algebras of countable Abelian $p$-groups. Publ. Math. (Debr.) 14, 365–405 (1967)
Besche, H.U., Eick, B., O’Brien, E.: SmallGrp: the GAP Small Groups Library, version 1.4.1 (2019). https://gap-packages.github.io/smallgrp/
Bessenrodt, C.: Some new block invariants coming from cohomology. Astérisque 181–182(5), 11–29 (1990)
Bleher, F.M., Kimmerle, W., Roggenkamp, K.W., Wursthorn, M.: Computational aspects of the isomorphism problem. In: Algorithmic Algebra and Number Theory, Heidelberg, 1997, pp. 313–329. Springer, Berlin (1999)
Borge, I.: A cohomological approach to the modular isomorphism problem. J. Pure Appl. Algebra 189(1–3), 7–25 (2004)
Bovdi, A.A.: Gruppovye kol’ca. Užgorod. Gosudarstv. Univ., Uzhgorod (1974)
Bovdi, A.A.: On the group of units in modular group algebras. In: Representation Theory of Groups, Algebras, and Orders, Constanţa, 1995, vol. 4, pp. 22–30 (1996)
Bovdi, A.A.: Generators of the units of the modular group algebra of a finite $p$-group. In: Methods in Ring Theory, Levico Terme, 1997. Lecture Notes in Pure and Appl. Math., vol. 198, pp. 49–62. Dekker, New York (1998)
Bovdi, V., Konovalov, A., Rossmanith, R., Schneider, C.: LAGUNA: Lie algebras and units of group algebras, version 3.9.3. (2019). https://gap-packages.github.io/laguna/
Brauer, R.: Representations of finite groups. In: Lectures on Modern Mathematics, vol. I, pp. 133–175. Wiley, New York (1963)
Briggs, B., Rubio y Degrasso, L.: Maximal tori in HH1 and fundamental group. Int. Math. Res. Not. (2022). https://doi.org/10.1093/imrn/rnac026
Broche, O., del Río, Á.: The modular isomorphism problem for two generated groups of class two. Indian J. Pure Appl. Math. 52(3), 721–728 (2021)
Carlson, J.F.: Periodic modules over modular group algebras. J. Lond. Math. Soc. (2) 15(3), 431–436 (1977)
Carns, G.L., Chao, C.: On the radical of the group algebra of a $p$-group over a modular field. Proc. Am. Math. Soc. 33, 323–328 (1972)
Coleman, D.B.: On the modular group ring of a $p$-group. Proc. Am. Math. Soc. 15, 511–514 (1964)
Coleman, D.B.: Computer investigations of group algebras. In: Infinite Groups and Group Rings, Tuscaloosa, AL, 1992, Ser. Algebra, vol. 1, pp. 7–12. World Sci. Publ., River Edge (1993)
Curtis, C.W., Reiner, I.: Representation Theory of Finite Groups and Associative Algebras. Pure and Applied Mathematics, vol. XI. Interscience Publishers, New York (1962)
Dade, E.C.: Deux groupes finis distincts ayant la même algèbre de groupe sur tout corps. Math. Z. 119, 345–348 (1971)
Dieckmann, E.M.: Isomorphism of Group Algebras of p-Groups. ProQuest LLC, Ann Arbor (1967). Thesis (Ph.D.)–Washington University in St. Louis
Dixon, J.D., du Sautoy, M.P.F., Mann, A., Segal, D.: Analytic Pro-$p$ Groups, 2nd edn. Cambridge Studies in Advanced Mathematics, vol. 61. Cambridge University Press, Cambridge (1999)
Drensky, V.: The isomorphism problem for modular group algebras of groups with large centres. In: Representation Theory, Group Rings, and Coding Theory. Contemp. Math., vol. 93, pp. 145–153. Am. Math. Soc., Providence (1989)
Eick, B.: Computing automorphism groups and testing isomorphisms for modular group algebras. J. Algebra 320(11), 3895–3910 (2008)
Eick, B.: ModIsom: a GAP 4 package, version 2.5.1 (2020). https://gap-packages.github.io/modisom/
Eick, B., Konovalov, A.: The modular isomorphism problem for the groups of order 512. In: Groups St Andrews 2009 in Bath. Volume 2. London Math. Soc. Lecture Note Ser., vol. 388, pp. 375–383. Cambridge University Press, Cambridge (2011)
Evens, L.: The Cohomology of Groups. Oxford Mathematical Monographs. Clarendon Press, New York (1991)
Farkas, D., Geiss, C., Marcos, E.: Smooth automorphism group schemes. In: Representations of Algebras, São Paulo, 1999. Lecture Notes in Pure and Appl. Math., vol. 224, pp. 71–89 (2002)
Furukawa, T.: A note on isomorphism invariants of a modular group algebra. Math. J. Okayama Univ. 23(1), 1–5 (1981)
García-Lucas, D., Margolis, L., del Río, Á.: Non-isomorphic 2-groups with isomorphic modular group algebras. J. Reine Angew. Math. 783, 269–274 (2022)
Gerstenhaber, M.: The cohomology structure of an associative ring. Ann. Math. (2) 78, 267–288 (1963)
Giannelli, E., Rizo, N., Schaeffer Fry, A.A.: Groups with few $p'$-character degrees. J. Pure Appl. Algebra 224(8), 106338 (2020) 15 pp.
Green, D.J., King, S.A.: The computation of the cohomology rings of all groups of order 128. J. Algebra 325, 352–363 (2011)
Green, D.J., King, S.A.: The cohomology of finite $p$-groups (2015). https://users.fmi.uni-jena.de/cohomology/
Hertweck, M.: A counterexample to the isomorphism problem for integral group rings. Ann. Math. (2) 154(1), 115–138 (2001)
Hertweck, M.: A note on the modular group algebras of odd $p$-groups of $M$-length three. Publ. Math. (Debr.) 71(1–2), 83–93 (2007)
Hertweck, M., Soriano, M.: On the modular isomorphism problem: groups of order $2^{6}$. In: Groups, Rings and Algebras, Contemp. Math., vol. 420, pp. 177–213. Am. Math. Soc., Providence (2006)
Hertweck, M., Soriano, M.: Parametrization of central Frattini extensions and isomorphisms of small group rings. Isr. J. Math. 157, 63–102 (2007)
Higman, G.: Units in group rings. Thesis (Ph.D.), Univ. Oxford. (1940)
Holvoet, R.: Sur les Z2-algèbres du groupe diédral d’ordre 8 et du groupe quaternionique. C. R. Acad. Sci. Paris Sér. A-B 262, A209–A210 (1966)
Holvoet, R.: Sur l’isomorphie d’algèbres de groupes. Bull. Soc. Math. Belg. 20, 264–282 (1968)
Holvoet, R.: The group algebra of a finite $p$-group over a field of characteristic $p$. Simon Stevin 42, 157–170 (1968/69)
Huppert, B., Blackburn, N.: Finite Groups. II. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 242. Springer, Berlin (1982). AMD, 44
Isaacs, I.M.: Character Theory of Finite Groups. Pure and Applied Mathematics, vol. 69. Academic Press, New York (1976)
Ivory, L.R.: A note on normal complements in mod $p$ envelopes. Proc. Am. Math. Soc. 79(1), 9–12 (1980)
Jackowski, S., Marciniak, Z.: Group automorphisms inducing the identity map on cohomology. In: Proceedings of the Northwestern Conference on Cohomology of Groups, Evanston, Ill., 1985, vol. 44, pp. 241–250 (1987)
Jennings, S.A.: The structure of the group ring of a $p$-group over a modular field. Trans. Am. Math. Soc. 50, 175–185 (1941)
Jespers, E., del Río, Á.: Group Ring Groups. Volume 1: Orders and Generic Constructions of Units. de Gruyter, Berlin (2016)
Johnson, D.L.: The modular group-ring of a finite $p$-group. Proc. Am. Math. Soc. 68(1), 19–22 (1978)
Kaur, S., Khan, M.: A note on normal complement problem for split metacyclic groups. Commun. Algebra 47(9), 3842–3848 (2019)
Kaur, S., Khan, M.: The normal complement problem and the structure of the unitary subgroup. Commun. Algebra 48(8), 3628–3636 (2020)
Klingler, L.: Construction of a counterexample to a conjecture of Zassenhaus. Commun. Algebra 19(8), 2303–2330 (1991)
Konovalov, A., Yakimenko, E.: Unitlib: the library of normalized unit groups of modular group algebras, version 4.0.0 (2018). https://gap-packages.github.io/unilib
Külshammer, B.: Bemerkungen über die Gruppenalgebra als symmetrische Algebra. II. J. Algebra 75(1), 59–69 (1982)
Külshammer, B.: Lectures on Block Theory. London Mathematical Society Lecture Note Series, vol. 161. Cambridge University Press, Cambridge (1991)
Lazard, M.: Sur les groupes nilpotents et les anneaux de Lie. Ann. Sci. Éc. Norm. Supér. (3) 71, 101–190 (1954)
Leary, I.: 3-groups are not determined by their integral cohomology rings. J. Pure Appl. Algebra 103(1), 61–79 (1995)
Linckelmann, M.: The Block Theory of Finite Group Algebras. Vol. II. London Mathematical Society Student Texts, vol. 92. Cambridge University Press, Cambridge (2018)
Linckelmann, M.: Finite-dimensional algebras arising as blocks of finite group algebras. In: Representations of Algebras, Contemp. Math., vol. 705, pp. 155–188. Am. Math. Soc., Providence (2018)
Lombardo-Radici, L.: Intorno alle algebre legate ai gruppi di ordine finito. Rend. Sem. Mat. Roma 4(2), 312–320 (1938)
Magnus, W.: Beziehungen zwischen Gruppen und Idealen in einem speziellen Ring. Math. Ann. 111(1), 259–280 (1935)
Makasikis, A.: Sur l’isomorphie d’algèbres de groupes sur un champ modulaire. Bull. Soc. Math. Belg. 28(2), 91–109 (1976)
Margolis, L., del Río, Á.: Finite subgroups of group rings: a survey. Adv. Group Theory Appl. 8, 1–37 (2019)
Margolis, L., Moede, T.: ModIsomExt: a GAP 4 package, version 1.0.0 (2020). https://www.tu-braunschweig.de/en/iaa/personal/moede
Margolis, L., Moede, T.: The Modular Isomorphism Problem for small groups – revisiting Eick’s algorithm, pp. 1–10. https://arxiv.org/abs/2010.07030
Margolis, L., Stanojkovski, M.: On the modular isomorphism problem for groups of class 3 and obelisks. J. Group Theory 25(1), 163–206 (2022)
Margolis, L., Sakurai, T., Stanojkovski, M.: Abelian invariants and a reduction theorem for the modular isomorphism problem, pp. 1–23. https://arxiv.org/abs/2110.10025
May, W.: The isomorphism problem for modular Abelian $p$-group algebras. J. Algebra Appl. 13(4), 1350125 (2014) 14 pp.
Miah, S.H.: On the isomorphism of group algebras of groups of order $8q$. J. Lond. Math. Soc. (2) 9, 549–556 (1974/75)
Michler, G.O.: Brauer’s conjectures and the classification of finite simple groups. In: Representation Theory, II, Ottawa, Ont., 1984. Lecture Notes in Math., vol. 1178, pp. 129–142. Springer, Berlin (1986)
Moran, L.E., Tench, R.N.: Normal complements in mod p-envelopes. Isr. J. Math. 27(3–4), 331–338 (1977)
Navarro, G.: Characters and Blocks of Finite Groups. London Mathematical Society Lecture Note Series, vol. 250. Cambridge University Press, Cambridge (1998)
Navarro, G.: Variations on the Itô-Michler theorem on character degrees. Rocky Mt. J. Math. 46(4), 1363–1377 (2016)
Navarro, G.: Character Theory and the McKay Conjecture. Cambridge Studies in Advanced Mathematics, vol. 175. Cambridge University Press, Cambridge (2018)
Navarro, G., Sambale, B.: On the blockwise modular isomorphism problem. Manuscr. Math. 157(1–2), 263–278 (2018)
Neukirch, J., Schmidt, A., Wingberg, K.: Cohomology of Number Fields, 2nd edn. Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 323. Springer, Berlin (2008)
Parmenter, M.M., Polcino Milies, C.: A note on isomorphic group rings. Bol. Soc. Bras. Mat. 12(2), 57–59 (1981)
Passman, D.S.: The group algebras of groups of order p4 over a modular field. Mich. Math. J. 12, 405–415 (1965)
Passman, D.S.: Infinite Group Rings. Pure and Applied Mathematics, vol. 6. Dekker, New York (1971)
Passman, D.S.: The Algebraic Structure of Group Rings. Pure and Applied Mathematics. Wiley-Interscience, New York (1977)
Perlis, S., Walker, G.L.: Abelian group algebras of finite order. Trans. Am. Math. Soc. 68, 420–426 (1950)
Quillen, D.: The spectrum of an equivariant cohomology ring. I, II. Ann. Math. (2) 94, 549–572 (1971). Ibid. (2) 94, 573–602 (1971)
Roggenkamp, K.W., Scott, L.: Isomorphisms of $p$-adic group rings. Ann. Math. (2) 126, 593–647 (1987)
Roggenkamp, K.W., Taylor, M.J.: Group Rings and Class Groups. DMV Seminar, vol. 18. Birkhäuser, Basel (1992)
Röhl, F.: On the isomorphism problem for group rings and completed augmentation ideals. Rocky Mt. J. Math. 17(4), 853–863 (1987)
Röhl, F.: On automorphisms of complete algebras and the isomorphism problem for modular group rings. Can. J. Math. 42(3), 383–394 (1990)
Röhl, F.: Unit groups of completed modular group algebras and the isomorphism problem. Proc. Am. Math. Soc. 111(3), 611–618 (1991)
Rouquier, R., Zimmermann, A.: Picard groups for derived module categories. Proc. Lond. Math. Soc. (3) 87(1), 197–225 (2003)
Ruiz, A., Viruel, A.: Cohomological uniqueness, Massey products and the modular isomorphism problem for 2-groups of maximal nilpotency class. Trans. Am. Math. Soc. 365(7), 3729–3751 (2013)
Sakurai, T.: The isomorphism problem for group algebras: a criterion. J. Group Theory 23(3), 435–445 (2020)
Salim, M.A.M.: The isomorphism problem for the modular group algebras of groups of order $p^{5}$. Ph.D. thesis, Department of Mathematics, University of Manchester (1993)
Salim, M.A.M., Sandling, R.: The unit group of the modular small group algebra. Math. J. Okayama Univ. 37, 15–25 (1995)
Salim, M.A.M., Sandling, R.: The modular group algebra problem for groups of order $p^{5}$. J. Aust. Math. Soc. Ser. A 61(2), 229–237 (1996)
Salim, M.A.M., Sandling, R.: The modular group algebra problem for small $p$-groups of maximal class. Can. J. Math. 48(5), 1064–1078 (1996)
Sánchez-Flores, S.: The Lie structure on the Hochschild cohomology of a modular group algebra. J. Pure Appl. Algebra 216(3), 718–733 (2012)
Sandling, R.: Units in the modular group algebra of a finite Abelian $p$-group. J. Pure Appl. Algebra 33(3), 337–346 (1984)
Sandling, R.: The isomorphism problem for group rings: a survey. In: Orders and Their Applications, Oberwolfach, 1984, pp. 256–288. Springer, Berlin (1985)
Sandling, R.: The modular group algebra of a central-elementary-by-Abelian $p$-group. Arch. Math. (Basel) 52(1), 22–27 (1989)
Sandling, R.: Presentations for unit groups of modular group algebras of groups of order 16. Math. Comput. 59(200), 689–701 (1992)
Sandling, R.: The modular group algebra problem for metacyclic $p$-groups. Proc. Am. Math. Soc. 124(5), 1347–1350 (1996)
Scott, L.: Defect groups and the isomorphism problem. Astérisque 181–182, 257–262 (1990)
Sehgal, S.K.: Topics in Group Rings. Monographs and Textbooks in Pure and Applied Math., vol. 50. Dekker, New York (1978)
Sehgal, S.K.: Units in Integral Group Rings. Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 69. Longman Scientific & Technical, Harlow (1993). Copublished in the United States with John Wiley & Sons, Inc., New York, with an appendix by Al Weiss
Shalev, A.: Lie dimension subgroups, Lie nilpotency indices, and the exponent of the group of normalized units. J. Lond. Math. Soc. (2) 43(1), 23–36 (1991)
The GAP Group: GAP – Groups, Algorithms, and Programming, version 4.10.2 (2019). http://www.gap-system.org
Tong-Viet, H.P.: Simple classical groups of Lie type are determined by their character degrees. J. Algebra 357, 61–68 (2012)
Tradler, T.: The Batalin-Vilkovisky algebra on Hochschild cohomology induced by infinity inner products. Ann. Inst. Fourier (Grenoble) 58(7), 2351–2379 (2008)
Van Antwerpen, A.: Coleman automorphisms of finite groups and their minimal normal subgroups. J. Pure Appl. Algebra 222(11), 3379–3394 (2018)
Whitcomb, A.: The Group Ring Problem. ProQuest LLC, Ann Arbor (1968). Thesis (Ph.D.)–The University of Chicago
Wilson, J.S.: Profinite Groups. London Mathematical Society Monographs. New Series, vol. 19. Clarendon Press, New York (1998)
Witherspoon, S.: Hochschild Cohomology for Algebras. Graduate Studies in Mathematics, vol. 204. Am. Math. Soc., Providence (2019)
Wursthorn, M.: Die modularen Gruppenringe der Gruppen der Ordnung $2^{6}$. Diplomarbeit, University of Stuttgart (1990)
Wursthorn, M.: Isomorphisms of modular group algebras: an algorithm and its application to groups of order $2^{6}$. J. Symb. Comput. 15(2), 211–227 (1993)
Zalesskiĭ, A.E., Mihalev, A.V.: Group rings. In: Current Problems in Mathematics, vol. 2, pp. 5–118 (1973) (Russian, errata insert)
Zassenhaus, H.: Ein Verfahren, jeder endlichen p-Gruppe einen Lie-Ring mit der Charakteristik p zuzuordnen. Abh. Math. Semin. Univ. Hamb. 13(1), 200–207 (1939)
Zimmermann, A.: Representation Theory: A Homological Algebra Point of View. Algebra and Applications, vol. 19. Springer, Cham (2014)
Žmud, È.M., Kurennoĭ, G.Č.: The finite groups of units of an integral group ring. Vestn. Har’kov. Gos. Univ. 1967(26), 20–26 (1967)