The Modular Isomorphism Problem: A Survey

L. Margolis1
1Instituto de ciencias matemáticas, C/ Nićolas Cabrera 13, 28049, Madrid, Spain

Tóm tắt

AbstractThe Modular Isomorphism Problem asks if an isomorphism of group algebras of two finite$p$p-groups$G$Gand$H$Hover a field of characteristic$p$p, implies an isomorphism of the groups$G$Gand$H$H. We survey the history of the problem, explain strategies which were developed to study it and present the recent negative solution of the problem. The problem is also compared to other isomorphism problems for group rings and various question remaining open are included.

Từ khóa


Tài liệu tham khảo

Bagiński, C.: The isomorphism question for modular group algebras of metacyclic $p$-groups. Proc. Am. Math. Soc. 104(1), 39–42 (1988)

Bagiński, C.: Modular group algebras of 2-groups of maximal class. Commun. Algebra 20(5), 1229–1241 (1992)

Bagiński, C.: On the isomorphism problem for modular group algebras of elementary Abelian-by-cyclic $p$-groups. Colloq. Math. 82(1), 125–136 (1999)

Bagiński, C., Caranti, A.: The modular group algebras of $p$-groups of maximal class. Can. J. Math. 40(6), 1422–1435 (1988)

Bagiński, C., Konovalov, A.: On 2-groups of almost maximal class. Publ. Math. (Debr.) 65(1–2), 97–131 (2004)

Bagiński, C., Konovalov, A.: The modular isomorphism problem for finite $p$-groups with a cyclic subgroup of index $p^{2}$. In: Groups St. Andrews 2005. Vol. 1. London Math. Soc. Lecture Note Ser., vol. 339, pp. 186–193. Cambridge University Press, Cambridge (2007)

Bagiński, C., Kurdics, J.: The modular group algebras of $p$-groups of maximal class II. Commun. Algebra 47(2), 761–771 (2019)

Balogh, Z.: On unitary subgroups of group algebras. Int. Electron. J. Algebra 29, 187–198 (2021)

Balogh, Z., Bovdi, A.A.: Group algebras with unit group of class $p$. Publ. Math. (Debr.) 65(3–4), 261–268 (2004)

Balogh, Z., Bovdi, V.: The isomorphism problem of unitary subgroups of modular group algebras. Publ. Math. (Debr.) 97(1–2), 27–39 (2020)

Bartholdi, L., Mikhailov, R.: Group and Lie algebra filtrations and homotopy groups of spheres (2018). arXiv:1805.10894

Benson, D.J.: Representations and Cohomology. I: Basic Representation Theory of Finite Groups and Associative Algebras. Cambridge Studies in Advanced Mathematics, vol. 30. Cambridge University Press, Cambridge (1991)

Benson, D.J.: Representations and Cohomology. II: Cohomology of Groups and Modules, 2nd edn. Cambridge Studies in Advanced Mathematics, vol. 31. Cambridge University Press, Cambridge (1998)

Benson, D., Kessar, R., Linckelmann, M.: On the BV structure of the Hochschild cohomology of finite group algebras. Pac. J. Math. 313(1), 1–44 (2021)

Berman, S.D.: On certain properties of group rings over the field of rational numbers. Užgorod. Gos. Univ. Naučn. Zap. Him. Fiz. Mat. 12, 88–110 (1955)

Berman, S.D.: On the equation $x^{m}=1$ in an integral group ring. Ukr. Mat. Ž. 7, 253–261 (1955)

Berman, S.D.: Group algebras of countable Abelian $p$-groups. Publ. Math. (Debr.) 14, 365–405 (1967)

Besche, H.U., Eick, B., O’Brien, E.: SmallGrp: the GAP Small Groups Library, version 1.4.1 (2019). https://gap-packages.github.io/smallgrp/

Bessenrodt, C.: Some new block invariants coming from cohomology. Astérisque 181–182(5), 11–29 (1990)

Bleher, F.M., Kimmerle, W., Roggenkamp, K.W., Wursthorn, M.: Computational aspects of the isomorphism problem. In: Algorithmic Algebra and Number Theory, Heidelberg, 1997, pp. 313–329. Springer, Berlin (1999)

Borge, I.: A cohomological approach to the modular isomorphism problem. J. Pure Appl. Algebra 189(1–3), 7–25 (2004)

Bovdi, A.A.: Gruppovye kol’ca. Užgorod. Gosudarstv. Univ., Uzhgorod (1974)

Bovdi, A.A.: On the group of units in modular group algebras. In: Representation Theory of Groups, Algebras, and Orders, Constanţa, 1995, vol. 4, pp. 22–30 (1996)

Bovdi, A.A.: Generators of the units of the modular group algebra of a finite $p$-group. In: Methods in Ring Theory, Levico Terme, 1997. Lecture Notes in Pure and Appl. Math., vol. 198, pp. 49–62. Dekker, New York (1998)

Bovdi, V., Konovalov, A., Rossmanith, R., Schneider, C.: LAGUNA: Lie algebras and units of group algebras, version 3.9.3. (2019). https://gap-packages.github.io/laguna/

Brauer, R.: Representations of finite groups. In: Lectures on Modern Mathematics, vol. I, pp. 133–175. Wiley, New York (1963)

Briggs, B., Rubio y Degrasso, L.: Maximal tori in HH1 and fundamental group. Int. Math. Res. Not. (2022). https://doi.org/10.1093/imrn/rnac026

Broche, O., del Río, Á.: The modular isomorphism problem for two generated groups of class two. Indian J. Pure Appl. Math. 52(3), 721–728 (2021)

Carlson, J.F.: Periodic modules over modular group algebras. J. Lond. Math. Soc. (2) 15(3), 431–436 (1977)

Carns, G.L., Chao, C.: On the radical of the group algebra of a $p$-group over a modular field. Proc. Am. Math. Soc. 33, 323–328 (1972)

Coleman, D.B.: On the modular group ring of a $p$-group. Proc. Am. Math. Soc. 15, 511–514 (1964)

Coleman, D.B.: Computer investigations of group algebras. In: Infinite Groups and Group Rings, Tuscaloosa, AL, 1992, Ser. Algebra, vol. 1, pp. 7–12. World Sci. Publ., River Edge (1993)

Curtis, C.W., Reiner, I.: Representation Theory of Finite Groups and Associative Algebras. Pure and Applied Mathematics, vol. XI. Interscience Publishers, New York (1962)

Dade, E.C.: Deux groupes finis distincts ayant la même algèbre de groupe sur tout corps. Math. Z. 119, 345–348 (1971)

Deskins, W.E.: Finite Abelian groups with isomorphic group algebras. Duke Math. J. 23, 35–40 (1956)

Dieckmann, E.M.: Isomorphism of Group Algebras of p-Groups. ProQuest LLC, Ann Arbor (1967). Thesis (Ph.D.)–Washington University in St. Louis

Dixon, J.D., du Sautoy, M.P.F., Mann, A., Segal, D.: Analytic Pro-$p$ Groups, 2nd edn. Cambridge Studies in Advanced Mathematics, vol. 61. Cambridge University Press, Cambridge (1999)

Drensky, V.: The isomorphism problem for modular group algebras of groups with large centres. In: Representation Theory, Group Rings, and Coding Theory. Contemp. Math., vol. 93, pp. 145–153. Am. Math. Soc., Providence (1989)

Eick, B.: Computing automorphism groups and testing isomorphisms for modular group algebras. J. Algebra 320(11), 3895–3910 (2008)

Eick, B.: ModIsom: a GAP 4 package, version 2.5.1 (2020). https://gap-packages.github.io/modisom/

Eick, B., Konovalov, A.: The modular isomorphism problem for the groups of order 512. In: Groups St Andrews 2009 in Bath. Volume 2. London Math. Soc. Lecture Note Ser., vol. 388, pp. 375–383. Cambridge University Press, Cambridge (2011)

Evens, L.: The Cohomology of Groups. Oxford Mathematical Monographs. Clarendon Press, New York (1991)

Farkas, D., Geiss, C., Marcos, E.: Smooth automorphism group schemes. In: Representations of Algebras, São Paulo, 1999. Lecture Notes in Pure and Appl. Math., vol. 224, pp. 71–89 (2002)

Furukawa, T.: A note on isomorphism invariants of a modular group algebra. Math. J. Okayama Univ. 23(1), 1–5 (1981)

García-Lucas, D., Margolis, L., del Río, Á.: Non-isomorphic 2-groups with isomorphic modular group algebras. J. Reine Angew. Math. 783, 269–274 (2022)

Gerstenhaber, M.: The cohomology structure of an associative ring. Ann. Math. (2) 78, 267–288 (1963)

Giannelli, E., Rizo, N., Schaeffer Fry, A.A.: Groups with few $p'$-character degrees. J. Pure Appl. Algebra 224(8), 106338 (2020) 15 pp.

Green, D.J., King, S.A.: The computation of the cohomology rings of all groups of order 128. J. Algebra 325, 352–363 (2011)

Green, D.J., King, S.A.: The cohomology of finite $p$-groups (2015). https://users.fmi.uni-jena.de/cohomology/

Hertweck, M.: A counterexample to the isomorphism problem for integral group rings. Ann. Math. (2) 154(1), 115–138 (2001)

Hertweck, M.: A note on the modular group algebras of odd $p$-groups of $M$-length three. Publ. Math. (Debr.) 71(1–2), 83–93 (2007)

Hertweck, M., Soriano, M.: On the modular isomorphism problem: groups of order $2^{6}$. In: Groups, Rings and Algebras, Contemp. Math., vol. 420, pp. 177–213. Am. Math. Soc., Providence (2006)

Hertweck, M., Soriano, M.: Parametrization of central Frattini extensions and isomorphisms of small group rings. Isr. J. Math. 157, 63–102 (2007)

Higman, G.: Units in group rings. Thesis (Ph.D.), Univ. Oxford. (1940)

Higman, G.: The units of group-rings. Proc. Lond. Math. Soc. (2) 46, 231–248 (1940)

Holvoet, R.: Sur les Z2-algèbres du groupe diédral d’ordre 8 et du groupe quaternionique. C. R. Acad. Sci. Paris Sér. A-B 262, A209–A210 (1966)

Holvoet, R.: Sur l’isomorphie d’algèbres de groupes. Bull. Soc. Math. Belg. 20, 264–282 (1968)

Holvoet, R.: The group algebra of a finite $p$-group over a field of characteristic $p$. Simon Stevin 42, 157–170 (1968/69)

Huppert, B., Blackburn, N.: Finite Groups. II. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 242. Springer, Berlin (1982). AMD, 44

Isaacs, I.M.: Character Theory of Finite Groups. Pure and Applied Mathematics, vol. 69. Academic Press, New York (1976)

Ito, N.: Some studies on group characters. Nagoya Math. J. 2, 17–28 (1951)

Ivory, L.R.: A note on normal complements in mod $p$ envelopes. Proc. Am. Math. Soc. 79(1), 9–12 (1980)

Jackowski, S., Marciniak, Z.: Group automorphisms inducing the identity map on cohomology. In: Proceedings of the Northwestern Conference on Cohomology of Groups, Evanston, Ill., 1985, vol. 44, pp. 241–250 (1987)

Jennings, S.A.: The structure of the group ring of a $p$-group over a modular field. Trans. Am. Math. Soc. 50, 175–185 (1941)

Jespers, E., del Río, Á.: Group Ring Groups. Volume 1: Orders and Generic Constructions of Units. de Gruyter, Berlin (2016)

Johnson, D.L.: The modular group-ring of a finite $p$-group. Proc. Am. Math. Soc. 68(1), 19–22 (1978)

Kaur, S., Khan, M.: A note on normal complement problem for split metacyclic groups. Commun. Algebra 47(9), 3842–3848 (2019)

Kaur, S., Khan, M.: The normal complement problem and the structure of the unitary subgroup. Commun. Algebra 48(8), 3628–3636 (2020)

Klingler, L.: Construction of a counterexample to a conjecture of Zassenhaus. Commun. Algebra 19(8), 2303–2330 (1991)

Konovalov, A., Yakimenko, E.: Unitlib: the library of normalized unit groups of modular group algebras, version 4.0.0 (2018). https://gap-packages.github.io/unilib

Külshammer, B.: Bemerkungen über die Gruppenalgebra als symmetrische Algebra. II. J. Algebra 75(1), 59–69 (1982)

Külshammer, B.: Lectures on Block Theory. London Mathematical Society Lecture Note Series, vol. 161. Cambridge University Press, Cambridge (1991)

Lazard, M.: Sur les groupes nilpotents et les anneaux de Lie. Ann. Sci. Éc. Norm. Supér. (3) 71, 101–190 (1954)

Leary, I.: 3-groups are not determined by their integral cohomology rings. J. Pure Appl. Algebra 103(1), 61–79 (1995)

Linckelmann, M.: The Block Theory of Finite Group Algebras. Vol. II. London Mathematical Society Student Texts, vol. 92. Cambridge University Press, Cambridge (2018)

Linckelmann, M.: Finite-dimensional algebras arising as blocks of finite group algebras. In: Representations of Algebras, Contemp. Math., vol. 705, pp. 155–188. Am. Math. Soc., Providence (2018)

Lombardo-Radici, L.: Intorno alle algebre legate ai gruppi di ordine finito. Rend. Sem. Mat. Roma 4(2), 312–320 (1938)

Magnus, W.: Beziehungen zwischen Gruppen und Idealen in einem speziellen Ring. Math. Ann. 111(1), 259–280 (1935)

Makasikis, A.: Sur l’isomorphie d’algèbres de groupes sur un champ modulaire. Bull. Soc. Math. Belg. 28(2), 91–109 (1976)

Margolis, L., del Río, Á.: Finite subgroups of group rings: a survey. Adv. Group Theory Appl. 8, 1–37 (2019)

Margolis, L., Moede, T.: ModIsomExt: a GAP 4 package, version 1.0.0 (2020). https://www.tu-braunschweig.de/en/iaa/personal/moede

Margolis, L., Moede, T.: The Modular Isomorphism Problem for small groups – revisiting Eick’s algorithm, pp. 1–10. https://arxiv.org/abs/2010.07030

Margolis, L., Stanojkovski, M.: On the modular isomorphism problem for groups of class 3 and obelisks. J. Group Theory 25(1), 163–206 (2022)

Margolis, L., Sakurai, T., Stanojkovski, M.: Abelian invariants and a reduction theorem for the modular isomorphism problem, pp. 1–23. https://arxiv.org/abs/2110.10025

May, W.: The isomorphism problem for modular Abelian $p$-group algebras. J. Algebra Appl. 13(4), 1350125 (2014) 14 pp.

Miah, S.H.: On the isomorphism of group algebras of groups of order $8q$. J. Lond. Math. Soc. (2) 9, 549–556 (1974/75)

Michler, G.O.: Brauer’s conjectures and the classification of finite simple groups. In: Representation Theory, II, Ottawa, Ont., 1984. Lecture Notes in Math., vol. 1178, pp. 129–142. Springer, Berlin (1986)

Moran, L.E., Tench, R.N.: Normal complements in mod p-envelopes. Isr. J. Math. 27(3–4), 331–338 (1977)

Navarro, G.: Characters and Blocks of Finite Groups. London Mathematical Society Lecture Note Series, vol. 250. Cambridge University Press, Cambridge (1998)

Navarro, G.: Variations on the Itô-Michler theorem on character degrees. Rocky Mt. J. Math. 46(4), 1363–1377 (2016)

Navarro, G.: Character Theory and the McKay Conjecture. Cambridge Studies in Advanced Mathematics, vol. 175. Cambridge University Press, Cambridge (2018)

Navarro, G., Sambale, B.: On the blockwise modular isomorphism problem. Manuscr. Math. 157(1–2), 263–278 (2018)

Neukirch, J., Schmidt, A., Wingberg, K.: Cohomology of Number Fields, 2nd edn. Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 323. Springer, Berlin (2008)

Parmenter, M.M., Polcino Milies, C.: A note on isomorphic group rings. Bol. Soc. Bras. Mat. 12(2), 57–59 (1981)

Passi, I.B.S., Sehgal, S.K.: Isomorphism of modular group algebras. Math. Z. 129, 65–73 (1972)

Passman, D.S.: The group algebras of groups of order p4 over a modular field. Mich. Math. J. 12, 405–415 (1965)

Passman, D.S.: Infinite Group Rings. Pure and Applied Mathematics, vol. 6. Dekker, New York (1971)

Passman, D.S.: Advances in group rings. Isr. J. Math. 19, 67–107 (1974)

Passman, D.S.: The Algebraic Structure of Group Rings. Pure and Applied Mathematics. Wiley-Interscience, New York (1977)

Perlis, S., Walker, G.L.: Abelian group algebras of finite order. Trans. Am. Math. Soc. 68, 420–426 (1950)

Quillen, D.: On the associated graded ring of a group ring. J. Algebra 10, 411–418 (1968)

Quillen, D.: The spectrum of an equivariant cohomology ring. I, II. Ann. Math. (2) 94, 549–572 (1971). Ibid. (2) 94, 573–602 (1971)

Rips, E.: On the fourth integer dimension subgroup. Isr. J. Math. 12, 342–346 (1972)

Ritter, J., Sehgal, S.K.: Isomorphism of group rings. Arch. Math. (Basel) 40(1), 32–39 (1983)

Roggenkamp, K.W., Scott, L.: Isomorphisms of $p$-adic group rings. Ann. Math. (2) 126, 593–647 (1987)

Roggenkamp, K.W., Taylor, M.J.: Group Rings and Class Groups. DMV Seminar, vol. 18. Birkhäuser, Basel (1992)

Röhl, F.: On the isomorphism problem for group rings and completed augmentation ideals. Rocky Mt. J. Math. 17(4), 853–863 (1987)

Röhl, F.: On automorphisms of complete algebras and the isomorphism problem for modular group rings. Can. J. Math. 42(3), 383–394 (1990)

Röhl, F.: Unit groups of completed modular group algebras and the isomorphism problem. Proc. Am. Math. Soc. 111(3), 611–618 (1991)

Rouquier, R., Zimmermann, A.: Picard groups for derived module categories. Proc. Lond. Math. Soc. (3) 87(1), 197–225 (2003)

Ruiz, A., Viruel, A.: Cohomological uniqueness, Massey products and the modular isomorphism problem for 2-groups of maximal nilpotency class. Trans. Am. Math. Soc. 365(7), 3729–3751 (2013)

Rusin, D.J.: The cohomology of the groups of order 32. Math. Comput. 53(187), 359–385 (1989)

Sakurai, T.: The isomorphism problem for group algebras: a criterion. J. Group Theory 23(3), 435–445 (2020)

Salim, M.A.M.: The isomorphism problem for the modular group algebras of groups of order $p^{5}$. Ph.D. thesis, Department of Mathematics, University of Manchester (1993)

Salim, M.A.M., Sandling, R.: The unit group of the modular small group algebra. Math. J. Okayama Univ. 37, 15–25 (1995)

Salim, M.A.M., Sandling, R.: The modular group algebra problem for groups of order $p^{5}$. J. Aust. Math. Soc. Ser. A 61(2), 229–237 (1996)

Salim, M.A.M., Sandling, R.: The modular group algebra problem for small $p$-groups of maximal class. Can. J. Math. 48(5), 1064–1078 (1996)

Sánchez-Flores, S.: The Lie structure on the Hochschild cohomology of a modular group algebra. J. Pure Appl. Algebra 216(3), 718–733 (2012)

Sandling, R.: Units in the modular group algebra of a finite Abelian $p$-group. J. Pure Appl. Algebra 33(3), 337–346 (1984)

Sandling, R.: The isomorphism problem for group rings: a survey. In: Orders and Their Applications, Oberwolfach, 1984, pp. 256–288. Springer, Berlin (1985)

Sandling, R.: The modular group algebra of a central-elementary-by-Abelian $p$-group. Arch. Math. (Basel) 52(1), 22–27 (1989)

Sandling, R.: Presentations for unit groups of modular group algebras of groups of order 16. Math. Comput. 59(200), 689–701 (1992)

Sandling, R.: The modular group algebra problem for metacyclic $p$-groups. Proc. Am. Math. Soc. 124(5), 1347–1350 (1996)

Scott, L.: Defect groups and the isomorphism problem. Astérisque 181–182, 257–262 (1990)

Sehgal, S.K.: Topics in Group Rings. Monographs and Textbooks in Pure and Applied Math., vol. 50. Dekker, New York (1978)

Sehgal, S.K.: Units in Integral Group Rings. Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 69. Longman Scientific & Technical, Harlow (1993). Copublished in the United States with John Wiley & Sons, Inc., New York, with an appendix by Al Weiss

Shalev, A.: Lie dimension subgroups, Lie nilpotency indices, and the exponent of the group of normalized units. J. Lond. Math. Soc. (2) 43(1), 23–36 (1991)

Swartz, E., Werner, N.J.: Fuchs’ problem for 2-groups. J. Algebra 556, 225–245 (2020)

The GAP Group: GAP – Groups, Algorithms, and Programming, version 4.10.2 (2019). http://www.gap-system.org

Thompson, J.G.: Normal $p$-complements and irreducible characters. J. Algebra 14, 129–134 (1970)

Tong-Viet, H.P.: Simple classical groups of Lie type are determined by their character degrees. J. Algebra 357, 61–68 (2012)

Tradler, T.: The Batalin-Vilkovisky algebra on Hochschild cohomology induced by infinity inner products. Ann. Inst. Fourier (Grenoble) 58(7), 2351–2379 (2008)

Van Antwerpen, A.: Coleman automorphisms of finite groups and their minimal normal subgroups. J. Pure Appl. Algebra 222(11), 3379–3394 (2018)

Weiss, A.: Rigidity of $p$-adic $p$-torsion. Ann. Math. (2) 127(2), 317–332 (1988)

Whitcomb, A.: The Group Ring Problem. ProQuest LLC, Ann Arbor (1968). Thesis (Ph.D.)–The University of Chicago

Wilson, J.S.: Profinite Groups. London Mathematical Society Monographs. New Series, vol. 19. Clarendon Press, New York (1998)

Witherspoon, S.: Hochschild Cohomology for Algebras. Graduate Studies in Mathematics, vol. 204. Am. Math. Soc., Providence (2019)

Wursthorn, M.: Die modularen Gruppenringe der Gruppen der Ordnung $2^{6}$. Diplomarbeit, University of Stuttgart (1990)

Wursthorn, M.: Isomorphisms of modular group algebras: an algorithm and its application to groups of order $2^{6}$. J. Symb. Comput. 15(2), 211–227 (1993)

Zalesskiĭ, A.E., Mihalev, A.V.: Group rings. In: Current Problems in Mathematics, vol. 2, pp. 5–118 (1973) (Russian, errata insert)

Zassenhaus, H.: Ein Verfahren, jeder endlichen p-Gruppe einen Lie-Ring mit der Charakteristik p zuzuordnen. Abh. Math. Semin. Univ. Hamb. 13(1), 200–207 (1939)

Zimmermann, A.: Representation Theory: A Homological Algebra Point of View. Algebra and Applications, vol. 19. Springer, Cham (2014)

Žmud, È.M., Kurennoĭ, G.Č.: The finite groups of units of an integral group ring. Vestn. Har’kov. Gos. Univ. 1967(26), 20–26 (1967)