The Mid-Pleistocene Transition: a delayed response to an increasing positive feedback?

Springer Science and Business Media LLC - Tập 60 - Trang 4083-4098 - 2022
J. D. Shackleton1, M. J. Follows1, P. J. Thomas2, A. W. Omta3
1Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, USA
2Department of Mathematics, Applied Mathematics and Statistics, Case Western Reserve University, Cleveland, USA
3Department of Earth, Environmental and Planetary Sciences, Case Western Reserve University, Cleveland, USA

Tóm tắt

Glacial–interglacial cycles constitute large natural variations in Earth’s climate. The Mid-Pleistocene Transition (MPT) marks a shift of the dominant periodicity of these climate cycles from $$\sim 40$$ to $$\sim 100$$  kyr. Recently, it has been suggested that this shift resulted from a gradual increase in the internal period (or equivalently, a decrease in the natural frequency) of the system. As a result, the system would then have locked to ever higher multiples of the external forcing period. We find that the internal period is sensitive to the strength of positive feedbacks in the climate system. Using a carbon cycle model in which feedbacks between calcifier populations and ocean alkalinity mediate atmospheric CO $$_2,$$ we simulate stepwise periodicity changes similar to the MPT through such a mechanism. Due to the internal dynamics of the system, the periodicity shift occurs up to millions of years after the change in the feedback strength is imposed. This suggests that the cause for the MPT may have occurred a significant time before the observed periodicity shift.

Tài liệu tham khảo

Arnaut LG, Ibáñez S (2020) Self-sustained oscillations and global climate changes. Sci Rep 10:11200 Ashkenazy Y, Tziperman E (2004) Are the 41 kyr glacial oscillations a linear response to Milankovitch forcing? Quat Sci Rev 23:1879–1890 Ashwin P, Ditlevsen PD (2015) The Middle Pleistocene Transition as a generic bifurcation on a slow manifold. Clim Dyn 45:2683–2695 Augustin L, Barbante C, Barnes PRF, Barnola JM, Bigler M, Castellano E, Cattani O, Chappellaz J, Dahl-Jensen D, Delmonte B, Dreyfus G, Durand G, Falourd S, Fischer H, Flückiger J, Hansson ME, Huybrechts P, Jugie G, Johnsen SJ, Jouzel J, Kaufmann P, Kipfstuhl J, Lambert F, Lipenkov VY, Littot GC, Longinelli A, Lorrain R, Maggi V, Masson-Delmotte V, Miller H, Mulvaney R, Oerlemans J, Oerter H, Orombelli G, Parrenin F, Peel DA, Petit JR, Raynaud D, Ritz C, Ruth U, Schwander J, Siegenthaler U, Souchez R, Stauffer B, Steffensen JP, Stenni B, Stocker TF, Tabacco IE, Udisti R, van de Wal RSW, van den Broeke M, Weiss J, Wilhelms F, Winther JG, Wolff EW, Zuchelli M (2004) Eight glacial cycles from an Antarctic ice core. Nature 429:623–628 Bajo P, Drysdale RN, Woodhead JD, Hellstrom JC, Hodell D, Ferretti P, Voelker AHL, Zanchetta G, Rodrigues T, Wolff E, Tyler J, Frisia S, Spötl C, Fallick AE (2020) Persistent influence of obliquity on ice age terminations since the Middle Pleistocene Transition. Science 367:1235–1239 Batchelor CL, Margold M, Krapp M, Murton DK, Dalton AS, Gibbard PL, Stokes CR, Murton JB, Manica A (2019) The configuration of Northern Hemisphere ice sheets through the Quaternary. Nat Commun 10:3713 Beaufort L, Lancelot Y, Camberlin P, Cayre O, Vincent E, Bassinot F, Labeyrie L (1997) Insolation cycles as a major control of Equatorial Indian Ocean primary production. Science 278:1451–1454 Berends CJ, Köhler P, van de Wal RSW (2021) On the cause of the Mid-Pleistocene Transition. Rev Geophys 59:e2020RG000727 Berger WH (1982) Increase of carbon dioxide in the atmosphere during deglaciation: the coral reef hypothesis. Naturwissenschaften 69:87–88 Berger A, Loutre MF (1991) Insolation values for the climate of the last 10 million years. Quat Sci Rev 10:297–317 Berger A, Crucifix M, Hodell DA, Mangili C, McManus JF, Otto-Bliesner B, Pol K, Raynaud D, Skinner LC, Tzedakis PC, Wolff EW, Yin QZ, Abe-Ouchi A, Barbante C, Brovkin V, Cacho I, Capron E, Ferretti P, Ganopolski A, Grimalt JO, Hönisch B, Kawamura K, Landais A, Margari V, Martrat B, Masson-Delmotte V, Mokeddem Z, Parrenin F, Prokopenko AA, Rashid H, Schulz M, Riveiros NV (2016) Interglacials of the last 800,000 years. Rev Geophys 54:162–219 Bintanja R, van de Wal RSW (2008) North American ice-sheet dynamics and the onset of 100,000-year glacial cycles. Nature 45:869–872 Brunelle BG, Sigman DM, Jaccard SL, Keigwin LD, Plessen B, Schettler G, Cook MS, Haug GH (2010) Glacial/interglacial changes in nutrient supply and stratification in the western subarctic North Pacific since the penultimate glacial maximum. Quat Sci Rev 29:2579–2590 Chalk TB, Hain MP, Foster GL, Röhling EJ, Sexton PF, Badger MPS, Cherry SG, Hasenfratz AP, Haug GH, Jaccard SL, Martínez-García A, Pälike H, Pancost RD, Wilson PA (2017) Causes of ice age intensification across the mid-Pleistocene transition. Proc Natl Acad Sci 114:13114–13119 Chester R (2000) Marine geochemistry, 2nd edn. Blackwell, Oxford Clark PU, Pollard D (1998) Origin of the Middle Pleistocene Transition by ice sheet erosion of regolith. Paleoceanography 13:1–9 Croll J (1875) Climate and time in their geological relations, 1st edn. Appleton, New York Crucifix M (2012) Oscillators and relaxation phenomena in Pleistocene climate theory. Philos Trans R Soc A 370:1140–1165 Daruka I, Ditlevsen PD (2016) A conceptual model for glacial cycles and the Middle Pleistocene Transition. Clim Dyn 46:29–40 Dickson AG (1981) An exact definition of total alkalinity and a procedure for the estimation of alkalinity and total inorganic carbon from titration data. Deep Sea Res 28A:609–623 Ditlevsen PD (2009) Bifurcation structure and noise-assisted transitions in the Pleistocene glacial cycles. Paleoceanography 24:PA3204 Dyez KA, Hönisch B, Schmidt GA (2018) Early Pleistocene obliquity-scale pCO\(_2\) variability at \(\sim \)1.5 million years ago. Paleoceanogr Paleoclimatol 33:1270–1291 Elderfield H, Ferretti P, Greaves M, Crowhurst S, McCave IN, Hodell D, Piotrowski AM (2012) Evolution of ocean temperature and ice volume through the Mid-Pleistocene climate transition. Science 337:704–709 Farmer JR, Hönisch B, Haynes LL, Kroon D, Jung S, Ford HL, Raymo ME, Jaume-Segui M, Bell DB, Goldstein SL, Pena LD, Yehudai M, Kim J (2019) Deep Atlantic Ocean carbon storage and the rise of 100,000-year glacial cycles. Nat Geosci 12:355–360 Flores JA, Marino M, Sierro FJ, Hodell DA, Charles CD (2003) Calcareous plankton dissolution pattern and coccolithophore assemblages during the last 600 kyr at ODP Site 1089 (Cape Basin, South Atlantic): paleoceanographic implications. Palaeogeogr Palaeoclimatol Palaeoecol 196:409–426 Gibbs MT, Kump LR (1994) Global chemical erosion during the Last Glacial Maximum and the present: sensitivity to changes in lithology and hydrology. Paleoceanography 9:529–543 Guckenheimer J, Holmes P (1985) Nonlinear oscillations, dynamical systems and bifurcations of vector fields. Springer, Berlin Han X, Xia F, Ji P, Bi Q, Kurths J (2016) Hopf-bifurcation-delay-induced bursting. Commun Nonlinear Sci Numer Simul 36:517–527 Hasenfratz AP, Jaccard SL, Martínez-García A, Sigman DM, Hodell DA, Vance D, Bernasconi SM, Kleiven HK, Haumann FA, Haug GH (2019) The residence time of southern ocean surface waters and the 100,000-year ice age cycle. Science 363:1080–1084 Hays JD, Imbrie J, Shackleton NJ (1976) Variations in the Earth’s orbit: pacemaker of the Ice Ages. Science 194:1121–1132 Herbert T (1997) A long marine history of carbon cycle modulation by orbital-climatic changes. Proc Natl Acad Sci 94:8362–8369 Higgins JA, Kurbatov AV, Spaulding NE, Brook EJ, Introne DS, Chimiak LM, Yan Y, Mayewski PA, Bender ML (2015) Atmospheric composition 1 million years ago from blue ice in the Allan Hills, Antarctica. Proc Natl Acad Sci 112:6887–6891 Hönisch B, Hemming NG, Archer DE, Siddall M, McManus JF (2009) Atmospheric carbon dioxide concentration across the mid-Pleistocene transition. Science 324:1551–1554 Huybers PJ (2006) Early Pleistocene glacial cycles and the integrated summer insolation forcing. Science 313:508–511 Huybers PJ (2007) Glacial variability over the last two million years: an extended depth-derived agemodel, continuous obliquity pacing, and the Pleistocene progression. Quat Sci Rev 26:37–55 Huybers PJ (2009) Pleistocene glacial variability as a chaotic response to obliquity forcing. Clim Past 5:481–488 Huybers PJ (2011) Combined obliquity and precession pacing of late Pleistocene deglaciations. Nature 480:229–232 Huybers PJ, Tziperman E (2008) Integrated summer insolation forcing and the 40,000-year glacial cycles: the perspective from an ice-sheet/energy-balance model. Paleoceanography 23:PA1208 Huybers PJ, Wunsch C (2005) Obliquity pacing of the late Pleistocene glacial terminations. Nature 434:491–494 Imbrie JZ, Berger A, Boyle EA, Clemens SC, Duffy A, Howard WR, Kukla G, Kutzbach J, Martinson DG, McIntyre A, Mix AC, Molfino B, Morley JJ, Peterson LC, Pisias NG, Prell WL, Raymo ME, Shackleton NJ, Toggweiler JR (1993) On the structure and origin of major glaciation cycles: 2. The 100,000-year cycle. Paleoceanography 8:699–735 Imbrie JZ, Imbrie-Moore A, Lisiecki LE (2011) A phase-space model for Pleistocene ice volume. Earth Planet Sci Lett 307:94–102 Izhikevich EM (2000) Neural excitability, spiking and bursting. Int J Bifurc Chaos 10:1171–1266 Jaccard SL, Haug GH, Sigman DM, Pedersen TF, Thierstein HR, Röhl U (2005) Glacial/interglacial changes in subarctic North Pacific stratification. Science 308:1003–1006 Jaccard SL, Hayes CT, Martínez-García A, Hodell DA, Sigman DM, Haug GH (2013) Two modes of changes in Southern Ocean productivity over the past million years. Science 339:1419–1423 Jones IW, Munhoven G, Tranter M, Huybrechts P, Sharp MJ (2002) Modelled glacial and non-glacial HCO\(_3^-\), Si and Ge fluxes since the LGM: little potential for impact on atmospheric CO\(_2\) concentrations and a potential proxy of continental chemical erosion, the marine Ge/Si ratio. Glob Planet Change 33:139–153 Kender S, Ravelo AC, Worne S, Swann GEA, Leng MJ, Asahi H, Becker J, Detlef H, Aiello IW, Andreasen D, Hall IR (2018) Closure of the Bering Strait caused Mid-Pleistocene Transition cooling. Nat Commun 9:5386 Kuznetsov YA (2004) Elements of applied bifurcation theory. Springer, New York Kuznetsov YA (2006) Andronov–Hopf bifurcation. Scholarpedia 1:1858. https://doi.org/10.4249/scholarpedia.1858. Revision #90964 Laskar J, Robutel P, Joutel F, Gastineau M, Correia ACM, Levrard B (2004) A long-term numerical solution for the insolation quantities of the Earth. Astron Astrophys 428:261–285 Lear CH, Billups K, Rickaby REM, Diester-Haass L, Mawbey EM, Sosdian SM (2016) Breathing more deeply: deep ocean carbon storage during the Mid-Pleistocene climate transition. Geology 44:1035–1038 Lisiecki LE, Raymo ME (2005) A Pliocene–Pleistocene stack of 57 globally distributed benthic \(\delta ^{18}\)O records. Paleoceanography 20:PA1003 Lüthi D, le Floch M, Bereiter B, Blunier T, Barnola JM, Siegenthaler U, Raynaud D, Jouzel J, Fischer H, Kawamura K, Stocker TF (2008) High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453:379–382 Milankovitch MM (1941) Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitenproblem. Königliche Serbische Akademie, Belgrade Mitsui T, Crucifix M, Aihara K (2015) Bifurcations and strange nonchaotic attractors in a phase oscillator model of glacial–interglacial cycles. Phys D Nonlinear Phenom 306:25–33 Nyman KHM, Ditlevsen PD (2019) The Middle Pleistocene Transition by frequency locking and slow ramping of internal period. Clim Dyn 53:3023–3038 Omta AW, van Voorn GAK, Rickaby REM, Follows MJ (2013) On the potential role of marine calcifiers in glacial–interglacial dynamics. Glob Biogeochem Cycles 27:692–704 Omta AW, Kooi BW, van Voorn GAK, Rickaby REM, Follows MJ (2016) Inherent characteristics of sawtooth cycles can explain different glacial periodicities. Clim Dyn 46:557–569 O’Neill GR, Broccoli AJ (2021) Orbital influences on conditions favorable for glacial inception. Geophys Res Lett 48:e2021GL094290 Paillard D (1998) The timing of Pleistocene glaciations from a simple multiple-state climate model. Nature 391:378–381 Paillard D (2015) Quaternary glaciations: from observations to theories. Quat Sci Rev 107:11–24 Paillard D, Parrenin F (2004) The Antarctic ice sheet and the triggering of deglaciations. Earth Planet Sci Lett 227:263–271 Pena L, Goldstein SL (2014) Thermohaline circulation crisis and impacts during the Mid-Pleistocene Transition. Science 345:318–322 Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola JM, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pépin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–436 Quinn C, Sieber J, von der Heydt AS, Lenton TM (2018) The Mid-Pleistocene Transition induced by delayed feedback and bistability. Dyn Stat Clim Syst 3:1–17 Rackauckas C, Nie Q (2017) Differentialequations.jl—a performant and feature-rich ecosystem for solving differential equations in Julia. J Open Res Softw 5:15 Raymo ME, Nisancioglu KH (2003) The 41 kyr world: Milankovitch’s other unsolved mystery. Paleoceanography 18:1011 Raymo ME, Lisiecki LE, Nisancioglu KH (2006) Plio-Pleistocene ice volume, Antarctic climate and the global \(\delta ^{18}\)O record. Science 313:492–495 Rial JA, Oh J, Reischmann E (2013) Synchronization of the climate system to eccentricity forcing and the 100,000-year problem. Nat Geosci 6:289–293 Rickaby REM, Elderfield H, Roberts NL, Hillenbrand CD, Mackensen A (2010) Evidence for elevated alkalinity in the glacial Southern Ocean. Paleoceanography 25:PA1209 Saltzman B, Maasch KA (1991) A first-order global model of late Cenozoic climatic change. II. Further analysis based on a simplification of the CO\(_2\) dynamics. Clim Dyn 5:201–210 Schefuß E, Jansen JHF, Sinninghe-Damsté JS (2005) Tropical environmental changes at the mid-Pleistocene transition: insights from lipid biomarkers. In: Head MJ, Gibbard PL (eds) Early-middle Pleistocene transitions: the land-ocean evidence. The Geological Society, Bath, pp 35–63 van Voorn GAK, Kooi BW (2017) Combining bifurcation and sensitivity analysis for ecological models. Eur Phys J Spec Top 226:2101–2118 Verbitsky MY, Crucifix M, Volobuev DM (2018) A theory of Pleistocene glacial rhythmicity. Earth Syst Dyn 9:1025–1043 Walker JGC, Hays PB, Kasting JF (1981) A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. J Geophys Res 86:9776–9782 Weinans E, Omta AW, van Voorn GAK, van Nes EH (2021) A potential feedback loop underlying glacial–interglacial cycles. Clim Dyn 57:523–535 White AF, Blum AE, Bullen TD, Vivit DV, Schultz M, Fitzpatrick J (1999) The effect of temperature on experimental and natural chemical weathering rates of granitoid rocks. Geochim Cosmochim Acta 63:3277–3291 Worne S, Kender S, Swann GEA, Leng MJ, Ravelo AC (2020) Reduced upwelling of nutrient and carbon-rich water in the subarctic Pacific during the Mid-Pleistocene Transition. Palaeogeogr Palaeoclimatol Palaeoecol 555:109845 Wunsch C (2003) The spectral description of climate change including the 100 ky energy. Clim Dyn 20:353–363 Yehudai M, Kim J, Pena LD, Jaume-Seguí M, Knudson KP, Bolge L, Malinverno A, Bickert T, Goldstein SL (2021) Evidence for a Northern Hemispheric trigger of the 100,000-y glacial cyclicity. Proc Natl Acad Sci 118:e2020260118