The Microbial Endocrinology of Pseudomonas aeruginosa: Inflammatory and Immune Perspectives

Archivum Immunologiae et Therapiae Experimentalis - Tập 66 - Trang 329-339 - 2018
Valerie F. L. Yong1, Min Min Soh1, Tavleen Kaur Jaggi1, Micheál Mac Aogáin1, Sanjay H. Chotirmall1
1Translational Respiratory Research Laboratory, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore

Tóm tắt

Pseudomonas aeruginosa is a major pathogen responsible for both acute and chronic infection. Known as a colonising pathogen of the cystic fibrosis (CF) lung, it is implicated in other settings such as bronchiectasis. It has the ability to cause acute disseminated or localised infection particularly in the immunocompromised. Human hormones have been highlighted as potential regulators of bacterial virulence through crosstalk between analogous “quorum sensing” (QS) systems present in the bacteria that respond to mammalian hormones. Pseudomonas aeruginosa is known to utilise interconnected QS systems to coordinate its virulence and evade various aspects of the host immune system activated in response to infection. Several human hormones demonstrate an influence on P. aeruginosa growth and virulence. This inter-kingdom signalling, termed “microbial endocrinology” has important implications for host–microbe interaction during infection and, potentially opens up novel avenues for therapeutic intervention. This phenomenon, supported by the existence of sexual dichotomies in both microbial infection and chronic lung diseases such as CF is potentially explained by sex hormones and their influence on the infective process. This review summarises our current understanding of the microbial endocrinology of P. aeruginosa, including its endogenous QS systems and their intersection with human endocrinology, pathogenesis of infection and the host immune system.

Tài liệu tham khảo

Alcaniz L, Vega A, Chacón P et al (2013) Histamine production by human neutrophils. FASEB J 27:2902–2910 Anas AA, van Lieshout MH, Claushuis TA et al (2016) Lung epithelial MyD88 drives early pulmonary clearance of Pseudomonas aeruginosa by a flagellin dependent mechanism. Am J Physiol Lung Cell Mol Physiol 311:L219–L228 Beury-Cirou A, Tannières M, Minard C et al (2013) At a supra-physiological concentration, human sexual hormones act as quorum-sensing inhibitors. PLoS One 8:e83564 Blier AS, Veron W, Bazire A et al (2011) C-type natriuretic peptide modulates quorum sensing molecule and toxin production in Pseudomonas aeruginosa. Microbiology 157(Pt 7):1929–1944 Brunelleschi S (2016) Immune response and auto-immune diseases: gender does matter and makes the difference. Italian J Gender Specific Med 2:5–14 Chotirmall SH (2014) The microbiological gender gap in cystic fibrosis. J Womens Health 23:995–996 Chotirmall SH, Greene CM, Oglesby IK et al (2010) 17Beta-estradiol inhibits IL-8 in cystic fibrosis by up-regulating secretory leucoprotease inhibitor. Am J Respir Crit Care Med 182:62–72 Chotirmall SH, Smith SG, Gunaratnam C et al (2012) Effect of estrogen on pseudomonas mucoidy and exacerbations in cystic fibrosis. N Engl J Med 366:1978–1986 Cinel I, Dellinger RP (2007) Advances in pathogenesis and management of sepsis. Curr Opin Infect Dis 20:345–352 Ciofu O, Riis B, Pressler T et al (2005) Occurrence of hypermutable Pseudomonas aeruginosa in cystic fibrosis patients is associated with the oxidative stress caused by chronic lung inflammation. Antimicrob Agents Chemother 49:2276–2282 Clamens T, Rosay T, Crépin A et al (2017) The aliphatic amidase AmiE is involved in regulation of Pseudomonas aeruginosa virulence. Sci Rep 7:41178 Cole JN, Nizet V (2016) Bacterial evasion of host antimicrobial peptide defenses. Microbiol Spectr 4:413–443 Cosgrove S, Chotirmall SH, Greene CM et al (2011) Pulmonary proteases in the cystic fibrosis lung induce interleukin 8 expression from bronchial epithelial cells via a heme/meprin/epidermal growth factor receptor/Toll-like receptor pathway. J Biol Chem 286:7692–7704 Costerton W, Veeh R, Shirtliff M et al (2003) The application of biofilm science to the study and control of chronic bacterial infections. J Clin Invest 112:1466–1477 Crousilles A, Maunders E, Bartlett S et al (2015) Which microbial factors really are important in Pseudomonas aeruginosa infections? Future Microbiol 10:1825–1836 Deng HP, Chai JK (2009) The effects and mechanisms of insulin on systemic inflammatory response and immune cells in severe trauma, burn injury, and sepsis. Int Immunopharmacol 9:1251–1259 Deng JC, Cheng G, Newstead MW et al (2006) Sepsis-induced suppression of lung innate immunity is mediated by IRAK-M. J Clin Invest 116:2532–2542 Dietrich LE, Teal TK, Price-Whelan A et al (2008) Redox-active antibiotics control gene expression and community behavior in divergent bacteria. Science 321:1203–1206 Diggle SP, Matthijs S, Wright VJ et al (2007) The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment. Chem Biol 14:87–96 Djonovic S, Urbach JM, Drenkard E et al (2013) Trehalose biosynthesis promotes Pseudomonas aeruginosa pathogenicity in plants. PLoS Pathog 9:e1003217 Elenkov IJ (2007) Effects of catecholamines on the immune response. NeuroImmune Biol 7:189–206 Elkins CA, Mullis LB (2006) Mammalian steroid hormones are substrates for the major RND- and MFS-type tripartite multidrug efflux pumps of Escherichia coli. J Bacteriol 188:1191–1195 Fargier E, Mac Aogáin M, Mooij MJ et al (2012) MexT functions as a redox-responsive regulator modulating disulfide stress resistance in Pseudomonas aeruginosa. J Bacteriol 194:3502–3511 Flierl MA, Rittirsch D, Huber-Lang M et al (2008) Catecholamines-crafty weapons in the inflammatory arsenal of immune/inflammatory cells or opening pandora’s box? Mol Med 14:195–204 Foo YZ, Nakagawa S, Rhodes G et al (2017) The effects of sex hormones on immune function: a meta-analysis. Biol Rev Camb Philos Soc 92:551–571 Franchi L, Munoz-Planillo R, Nunez G (2012) Sensing and reacting to microbes through the inflammasomes. Nat Immunol 13:325–332 Freestone P (2013) Communication between bacteria and their hosts. Scientifica 2013:361073 Freestone PP, Hirst RA, Sandrini SM et al (2012) Pseudomonas aeruginosa-catecholamine inotrope interactions: a contributory factor in the development of ventilator-associated pneumonia? Chest 142:1200–1210 Garcia-Gomez E, Gonzalez-Pedrajo B, Camacho-Arroyo I (2013) Role of sex steroid hormones in bacterial-host interactions. Biomed Res Int 2013:928290 Gein SV (2014) Dynorphins in regulation of immune system functions. Biochemistry 79:397–405 Gellatly SL, Hancock RE (2013) Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathog Dis 67:159–173 Ghafoor A, Hay ID, Rehm BH (2011) Role of exopolysaccharides in Pseudomonas aeruginosa biofilm formation and architecture. Appl Environ Microbiol 77:5238–5246 Gibson RL, Burns JL, Ramsey BW (2003) Pathophysiology and management of pulmonary infections in cystic fibrosis. Am J Respir Crit Care Med 168:918–951 Gómez MI, Prince A (2007) Opportunistic infections in lung disease: Pseudomonas infections in cystic fibrosis. Curr Opin Pharmacol 7:244–251 Grisanti LA, Woster AP, Dahlman J et al (2011) Alpha1-adrenergic receptors positively regulate Toll-like receptor cytokine production from human monocytes and macrophages. J Pharmacol Exp Ther 338:648–657 Guttenplan SB, Kearns DB (2013) Regulation of flagellar motility during biofilm formation. FEMS Microbiol Rev 37:849–871 Hall S, McDermott C, Anoopkumar-Dukie S et al (2016) Cellular effects of pyocyanin, a secreted virulence factor of Pseudomonas aeruginosa. Toxins 8(8):236. https://doi.org/10.3390/toxins8080236 Harness-Brumley CL, Elliott AC, Rosenbluth DB et al (2014) Gender differences in outcomes of patients with cystic fibrosis. J Womens Health 23:1012–1020 Hartl D, Griese M, Kappler M et al (2006) Pulmonary T(H)2 response in Pseudomonas aeruginosa-infected patients with cystic fibrosis. J Allergy Clin Immunol 117:204–211 Hector A, Schäfer H, Pöschel S et al (2015) Regulatory T-cell impairment in cystic fibrosis patients with chronic pseudomonas infection. Am J Respir Crit Care Med 191:914–923 Herr N, Bode C, Duerschmied D (2017) The effects of serotonin in immune cells. Front Cardiovasc Med 4:48 Hughes DT, Sperandio V (2008) Inter-kingdom signalling: communication between bacteria and their hosts. Nat Rev Microbiol 6:111–120 Jansen ASP, Van Nguyen X, Karpitskiy V et al (1995) Central command neurons of the sympathetic nervous system: basis of the fight-or-flight response. Science 270:644–646 Jensen PO, Givskov M, Bjarnsholt T et al (2010) The immune system vs. Pseudomonas aeruginosa biofilms. FEMS Immunol Med Microbiol 59:292–305 Jimenez PN, Koch G, Thompson JA et al (2012) The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiol Mol Biol Rev 76:46–65 Jones RN (2010) Microbial etiologies of hospital-acquired bacterial pneumonia and ventilator-associated bacterial pneumonia. Clin Infect Dis 51(Suppl 1):S81–S87 Kiseleva E, Novik G (2015) Role of type III secretory system and related exotoxins in infections induced by an opportunistic pathogen Pseudomonas aeruginosa. In: Méndez-Vilas A (ed) The battle against microbial pathogens: basic science, technological advances and educational programs. FORMATEX microbiology series N 5, vol 2. pp 733–744 Klein SL, Flanagan KL (2016) Sex differences in immune responses. Nat Rev Immunol 16:626–638 Knecht LD, O’Connor G, Mittal R et al (2016) Serotonin activates bacterial quorum sensing and enhances the virulence of Pseudomonas aeruginosa in the host. EBioMedicine 9:161–169 Lagoumintzis G, Christofidou M, Dimitracopoulos G et al (2003) Pseudomonas aeruginosa slime glycolipoprotein is a potent stimulant of tumor necrosis factor alpha gene expression and activation of transcription activators nuclear factor κB and activator protein 1 in human monocytes. Infect Immun 71:4614–4622 Lagoumintzis G, Xaplanteri P, Dimitracopoulos G et al (2008) TNF-alpha induction by Pseudomonas aeruginosa lipopolysaccharide or slime-glycolipoprotein in human monocytes is regulated at the level of Mitogen-activated Protein Kinase activity: a distinct role of Toll-like receptor 2 and 4. Scand J Immunol 67:193–203 Lavoie EG, Wangdi T, Kazmierczak BI (2011) Innate immune responses to Pseudomonas aeruginosa infection. Microbes Infect 13:1133–1145 Lecaille F, Lalmanach G, Andrault PM (2016) Antimicrobial proteins and peptides in human lung diseases: a friend and foe partnership with host proteases. Biochimie 122:151–168 Lee J, Zhang L (2015) The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell 6:26–41 Leone M, Textoris J, Capo C and Mege J-L (2012) Sex hormones and bacterial infections. In: Dubey R (ed) Sex hormones. InTech. https://doi.org/10.5772/26871. https://pdfs.semanticscholar.org/a7cc/19ed33b3596e9536f7951a399ad58cc22194.pdf. Accessed 8 July 2017 Leung JM, Tiew PY, Mac Aogáin M et al (2017) The role of acute and chronic respiratory colonization and infections in the pathogenesis of COPD. Respirology 22:634–650 Li W, Lyte M, Freestone PP et al (2009) Norepinephrine represses the expression of toxA and the siderophore genes in Pseudomonas aeruginosa. FEMS Microbiol Lett 299:100–109 Lore NI, Cigana C, Riva C et al (2016) IL-17A impairs host tolerance during airway chronic infection by Pseudomonas aeruginosa. Sci Rep 6:25937 Lyte M (2013) Microbial endocrinology in the microbiome-gut-brain axis: how bacterial production and utilization of neurochemicals influence behavior. PLoS Pathog 9:e1003726 Lyte M, Ernst S (1992) Catecholamine induced growth of gram negative bacteria. Life Sci 50:203–212 Mahdy AM, Webster NR (2011) Histamine and antihistamines. Anaesth Intensive Care Med 12:324–329 Maseda H, Sawada I, Saito K et al (2004) Enhancement of the mexAB-oprM efflux pump expression by a quorum-sensing autoinducer and its cancellation by a regulator, MexT, of the mexEF-oprN efflux pump operon in Pseudomonas aeruginosa. Antimicrob Agents Chemother 48:1320–1328 Miao EA, Mao DP, Yudkovsky N et al (2010) Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc Natl Acad Sci USA 107:3076–3080 Mogensen TH (2009) Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev 22:240–273 Mulcahy LR, Isabella VM, Lewis K (2014) Pseudomonas aeruginosa biofilms in disease. Microb Ecol 68:1–12 Mund A, Diggle SP, Harrison F (2017) The fitness of Pseudomonas aeruginosa quorum sensing signal cheats is influenced by the diffusivity of the environment. MBio 8(3):e00353-17. https://doi.org/10.1128/mBio.00353-17 Murray MA, Chotirmall SH (2015) The impact of immunosenescence on pulmonary disease. Mediators Inflamm 2015:692546 Nakanishi K, Tajima F, Itoh H et al (1999) Expression of C-type natriuretic peptide during development of rat lung. Am J Physiol 277(5 Pt 1):L996–L1002 O’Loughlin CT, Miller LC, Siryaporn A et al (2013) A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation. Proc Natl Acad Sci USA 110:17981–17986 Ortona E, Delunardo F, Maselli A et al (2015) Sex hormones and gender disparity in immunity and autoimmunity. Italian J Gender Specific Med 1:45–50 Papenfort K, Bassler BL (2016) Quorum sensing signal-response systems in Gram-negative bacteria. Nat Rev Microbiol 14:576–588 Parkins MD, Gregson DB, Pitout JD et al (2010) Population-based study of the epidemiology and the risk factors for Pseudomonas aeruginosa bloodstream infection. Infection 38:25–32 Peek ME, Bhatnagar A, McCarty NA et al (2012) Pyoverdine, the major siderophore in Pseudomonas aeruginosa, evades NGAL recognition. Interdiscip Perspect Infect Dis 2012:843509 Pu Q, Gan C, Li R et al (2017) Atg7 Deficiency intensifies inflammasome activation and pyroptosis in Pseudomonas sepsis. J Immunol 198:3205–3213 Quick J, Cumley N, Wearn CM et al (2014) Seeking the source of Pseudomonas aeruginosa infections in a recently opened hospital: an observational study using whole-genome sequencing. BMJ Open 4:e006278 Rabin N, Zheng Y, Opoku-Temeng C et al (2015) Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med Chem 7:493–512 Rada B (2017) Interactions between neutrophils and Pseudomonas aeruginosa in cystic fibrosis. Pathogens 6(1):E10. https://doi.org/10.3390/pathogens6010010 Rosay T, Bazire A, Diaz S et al. (2015) Pseudomonas aeruginosa expresses a functional human natriuretic peptide receptor ortholog: involvement in biofilm formation. MBio 6(4):e01033-15. https://doi.org/10.1128/mBio.01033-15 Sakhtah H, Koyama L, Zhang Y et al (2016) The Pseudomonas aeruginosa efflux pump MexGHI-OpmD transports a natural phenazine that controls gene expression and biofilm development. Proc Natl Acad Sci USA 113:E3538–E3547 Schwarzer C (2009) 30 years of dynorphins—new insights on their functions in neuropsychiatric diseases. Pharmacol Ther 123:353–370 Shajib MS, Khan WI (2015) The role of serotonin and its receptors in activation of immune responses and inflammation. Acta Physiol 213:561–574 Silva Filho LV, Ferreira Fde A, Reis FJ et al (2013) Pseudomonas aeruginosa infection in patients with cystic fibrosis: scientific evidence regarding clinical impact, diagnosis, and treatment. J Bras Pneumol 39:495–512 Singh PK, Parsek MR, Greenberg EP et al (2002) A component of innate immunity prevents bacterial biofilm development. Nature 417:552–555 Skerrett SJ, Liggitt HD, Hajjar AM et al (2004) Cutting Edge: Myeloid differentiation factor 88 is essential for pulmonary host defense against Pseudomonas aeruginosa but not Staphylococcus aureus. J Immunol 172:3377–3381 Sun J, Deng Z, Yan A (2014) Bacterial multidrug efflux pumps: mechanisms, physiology and pharmacological exploitations. Biochem Biophys Res Commun 453:254–267 Tateda K, Ishii Y, Horikawa M et al (2003) The Pseudomonas aeruginosa autoinducer N-3-Oxododecanoyl homoserine lactone accelerates apoptosis in macrophages and neutrophils. Infect Immun 71:5785–5793 Tian ZX, Fargier E, Mac Aogain M et al (2009) Transcriptome profiling defines a novel regulon modulated by the LysR-type transcriptional regulator MexT in Pseudomonas aeruginosa. Nucleic Acids Res 37:7546–7559 Tiringer K, Treis A, Fucik P et al (2013) A Th17- and Th2-skewed cytokine profile in cystic fibrosis lungs represents a potential risk factor for Pseudomonas aeruginosa infection. Am J Respir Crit Care Med 187:621–629 Tredget EE, Shankowsky HA, Rennie R et al (2004) Pseudomonas infections in the thermally injured patient. Burns 30:3–26 Trigunaite A, Dimo J, Jørgensen TN (2015) Suppressive effects of androgens on the immune system. Cell Immunol 294:87–94 Tumbarello M, Repetto E, Trecarichi EM et al (2011) Multidrug-resistant Pseudomonas aeruginosa bloodstream infections: risk factors and mortality. Epidemiol Infect 139:1740–1749 Valentino RJ, Van Bockstaele E (2015) Endogenous opioids: the downside of opposing stress. Neurobiol Stress 1:23–32 Veesenmeyer JL, Hauser AR, Lisboa T et al (2009) Pseudomonas aeruginosa virulence and therapy: evolving translational strategies. Crit Care Med 37:1777–1786 Veron W, Lesouhaitier O, Pennanec X et al (2007) Natriuretic peptides affect Pseudomonas aeruginosa and specifically modify lipopolysaccharide biosynthesis. FEBS J 274:5852–5864 Visca P, Imperi F, Lamont IL (2007) Pyoverdine siderophores: from biogenesis to biosignificance. Trends Microbiol 15:22–30 Vital-Lopez FG, Reifman J, Wallqvist A (2015) Biofilm formation mechanisms of Pseudomonas aeruginosa predicted via genome-scale kinetic models of bacterial metabolism. PLoS Comput Biol 11:e1004452 Vogel G (2017) Meet WHO’s dirty dozen: the 12 bacteria for which new drugs are most urgently needed. Science Magazine, 27 Feb 2017. https://doi.org/10.1126/science.aal0829 vom Steeg LG, Klein SL (2017) Sex steroids mediate bidirectional interactions between hosts and microbes. Horm Behav 88:45–51 Wang Y, Cela E, Gagnon S et al (2010) Estrogen aggravates inflammation in Pseudomonas aeruginosa pneumonia in cystic fibrosis mice. Respir Res 11:166 Watters C, Everett JA, Haley C et al (2014) Insulin treatment modulates the host immune system to enhance Pseudomonas aeruginosa wound biofilms. Infect Immun 82:92–100 Weiner LM, Webb AK, Limbago B et al (2016) Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011–2014. Infect Control Hosp Epidemiol 37:1288–1301 Williams IR, Parkos CA (2007) Colonic neutrophils in inflammatory bowel disease: double-edged swords of the innate immune system with protective and destructive capacity. Gastroenterology 133:2049–2052 Wisplinghoff H, Bischoff T, Tallent SM et al (2004) Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis 39:309–317 Xaplanteri P, Lagoumintzis G, Dimitracopoulos G et al (2009) Synergistic regulation of Pseudomonas aeruginosa-induced cytokine production in human monocytes by mannose receptor and TLR2. Eur J Immunol 39:730–740 Xu X, Zhang H, Song Y et al (2012) Strain-dependent induction of neutrophil histamine production and cell death by Pseudomonas aeruginosa. J Leukoc Biol 91:275–284 Zaborina O, Lepine F, Xiao G et al (2007) Dynorphin activates quorum sensing quinolone signaling in Pseudomonas aeruginosa. PLoS Pathog 3:e35 Zhang Z, Louboutin JP, Weiner DJ et al (2005) Human airway epithelial cells sense Pseudomonas aeruginosa infection via recognition of flagellin by Toll-like receptor 5. Infect Immun 73:7151–7160 Zhu J, Yamane H, Paul WE (2010) Differentiation of effector CD4 T cell populations. Annu Rev Immunol 28:445–489