The Method of Alternating Relaxed Projections for Two Nonconvex Sets

Vietnam Journal of Mathematics - Tập 42 Số 4 - Trang 421-450 - 2014
Heinz H. Bauschke1, Hung M. Phan2, Xianfu Wang1
1Mathematics, University of British Columbia, Kelowna, Canada
2Mathematics and Statistics, University of Victoria, Victoria, Canada

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aharoni, R., Censor, Y.: Block-iterative projection methods for parallel computation of solutions to convex feasibility problems. Linear Algebra Appl. 120, 165–175 (1989)

Baillon, J.B., Bruck, R.E., Reich, S.: On the asymptotic behavior of nonexpansive mappings and semigroups in Banach spaces. Houst. J. Math. 4, 1–9 (1978)

Baillon, J.-B., Combettes, P.L., Cominetti, R.: Asymptotic behaviour of compositions of under-relaxed nonexpansive operators. arXiv:1304.7078 (2013)

Bauschke, H.H.: The approximation of fixed points of compositions of nonexpansive mappings in Hilbert space. J. Math. Anal. Appl. 202, 150–159 (1996)

Bauschke, H.H., Borwein, J.M.: On the convergence of von Neumann’s alternating projection algorithm for two sets. Set-Valued Anal. 1, 185–212 (1993)

Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38, 367–426 (1996)

Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011)

Bauschke, H.H., Luke, D.R., Phan, H.M., Wang, X.: Restricted normal cones and the method of alternating projections: theory. Set-Valued Var. Anal. 21, 431–473 (2013)

Bauschke, H.H., Luke, D.R., Phan, H.M., Wang, X.: Restricted normal cones and the method of alternating projections: applications. Set-Valued Var. Anal. 21, 475–501 (2013)

Borwein, J.M., Vanderwerff, J.D.: Convex Functions. Cambridge University Press, Cambridge (2010)

Bruck, R.E., Reich, S.: Nonexpansive projections and resolvents of accretive operators in Banach spaces. Houst. J. Math. 3, 459–470 (1977)

Cegielski, A.: Iterative Methods for Fixed Point Problems in Hilbert Spaces. Lect. Notes Math., vol. 2057. Springer, Berlin (2012)

Censor, Y., Zenios, S.A.: Parallel Optimization: Theory, Algorithms, and Applications. Oxford University Press, New York (1997)

Combettes, P.L.: Solving monotone inclusions via compositions of nonexpansive averaged operators. Optimization 53, 475–504 (2004)

Combettes, P.L., Trussell, H.J.: Method of successive projections for finding a common point of sets in metric spaces. J. Optim. Theory Appl. 67, 487–507 (1990)

Deutsch, F.: Best Approximation in Inner Product Spaces. Springer, New York (2001)

Deutsch, F., Hundal, H.: The rate of convergence for the cyclic projections algorithm I: angles between convex sets. J. Approx. Theory 142, 36–55 (2006)

Deutsch, F., Hundal, H.: The rate of convergence for the cyclic projections algorithm II: norms of nonlinear operators. J. Approx. Theory 142, 56–82 (2006)

Deutsch, F., Hundal, H.: The rate of convergence for the cyclic projections algorithm III: regularity of convex sets. J. Approx. Theory 155, 155–184 (2008)

Goebel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory. Cambridge University Press, Cambridge (1990)

Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Dekker, New York (1984)

Gubin, L.G., Polyak, B.T., Raik, E.V.: The method of projections for finding the common point of convex sets. USSR Comput. Math. Math. Phys. 7, 1–24 (1967)

Lewis, A.S., Luke, D.R., Malick, J.: Local linear convergence for alternating and averaged nonconvex projections. Found. Comput. Math. 9, 485–513 (2009)

Luke, D.R.: Finding best approximation pairs relative to a convex and prox-regular set in a Hilbert space. SIAM J. Optim. 19, 714–739 (2008)

Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation I. Springer, Berlin (2006)

Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis, corrected 3rd printing edn. Springer, Berlin (2009)

von Neumann, J.: Functional Operators, Vol. II: The Geometry of Orthogonal Spaces. Annals of Mathematical Studies, vol. 22. Princeton University Press, Princeton (1950)

Wang, X., Bauschke, H.H.: Compositions and averages of two resolvents: relative geometry of fixed point sets and a partial answer to a question by C. Byrne. Nonlinear Anal. 20, 131–153 (2012)

Wiener, N.: On the factorization of matrices. Comment. Math. Helv. 29, 97–111 (1955)

Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, Singapore (2002)