The Mergelyan property for weakly pseudoconvex domains

manuscripta mathematica - Tập 22 - Trang 199-208 - 1977
John Erik Fornaess1, Alexander Nagel2
1Department of Mathematics, Princeton University, Princeton, USA
2Department of Mathematics, University of Wisconsin, Madison, USA

Tóm tắt

We show that pseudoconvex domains have the Mergelyan property if the Levi form is degenerate on a sufficiently small set in the boundary. This includes the case when the weakly pseudoconvex points all lie on a smooth curve.

Tài liệu tham khảo

Diederich, K., and Fornaess, J.E.; A strange bounded smooth domain of holomorphy, Bull. A.M.S.82, 74–76 (1976). Fornaess, J.E.; Embedding strictly pseudoconvex domains in convex domains, Am. J. Math.98, 529–569 (1976). Grauert, H. and Lieb, I.; Das Ramirezsche Integral und die Lösung der Gleichung\(\overline \partial f = \alpha \) im Bereich der Beschränkten Formen, Rice University Studies56, 29–50 (1970). Henkin, G.M.; Integral representations of functions holomorphic in strictly pseudoconvex domains and some applications, Mat. Sbornik Tom78 (120) no. 4, 611–632 (1969)=Math. USSR Sb. Vol. 7 no. 4, 597–616 (1969). Hörmander, L., and Wermer, J.; Uniform approximation on compact sets in ℂn, Math. Scand.23, 5–21 (1968). Kerzman, N.; Hölder and LP estimates for solutions of\(\overline \partial u = f\) in strongly pseudoconvex domains, Comm. Pare and Appl. Math. Vol. 24, 301–379 (1971). Lieb, I.; Ein Approximationssatz auf streng pseudokonvexen Gebieten Math. Ann.184, 56–60 (1969). Range, M.; Approximation by holomorphic functions on Pseudoconvex Domains with isolated degeneracies, to appear in manuscripta mathematica.