The Measurement of Mobility-Based Accessibility—The Impact of Floods on Trips of Various Length and Motivation

Marta Borowska-Stefańska1, Michał Kowalski1, Szymon Wiśniewski1
1Faculty of Geographical Sciences, Institute of the Built Environment and Spatial Policy, University of Lodz, 90-142 Lodz, Poland

Tóm tắt

The main purpose of this article was to develop a method of researching accessibility in the event of a flood through the application of measurement based on mobility. In the course of the research, it has been proven that changes in mobility (and the related travel speed) are too significant to be ignored when studying accessibility in unusual circumstances. The vast majority of existing accessibility studies rely primarily on speed models, which – in the event of a flood – do not indicate the external effects of the natural disaster. On the basis of the conducted research it has been stated that the occurrence of a flood has a significant impact on changes in the spatial distribution of traffic and its related speeds. Such changes vary depending on the particular means of transport. With the most commonly applied methods of measuring accessibility, which are customarily based on speed models, the changes we observed would not be recorded. The application of mobility-based research in the analyses of accessibility – especially in the event of a flood – indicates the disaster’s influence on the capacity of the road network, and thus, it allows for more effective flood-risk management. Furthermore, this article also demonstrates the possibility of applying source materials available in most member states of the EU, i.e., flood-risk maps and digital terrain models (NMPT), for the purposes of analysing and identifying road section closures within the transport network after the occurrence of a flood.

Từ khóa


Tài liệu tham khảo

Radosavljevic, 2017, Tool for decision-making regarding general evacuation during a rapid river flood, Public Health, 146, 134, 10.1016/j.puhe.2017.01.025

Zhou, Q., Leng, G., and Peng, J. (2018). Recent changes in the occurrences and damages of floods and droughts in the United States. Water, 10.

DfT, D.T. (2014). Transport Resilience Review. A Review of the Resilience of the Transport Network to Extreme Weather Events, Department for Transport.

Dawson, R.J., Thompson, D., Johns, D., Gosling, S., Chapman, L., Darch, G., Watson, G., Powrie, W., Bell, S., and Paulson, K. (2016). Infrastructure. UK Climate Change Risk Assessment Evidence Report, Adaptation Sub-Committee of the Committee on Climate Change. Report Prepared for the Adaptation Sub-Committee of the Committee on Climate Change.

Pregnolato, 2016, Assessing urban strategies for reducing the impacts of extreme weather on infrastructure networks, R. Soc. Open Sci., 3, 160023, 10.1098/rsos.160023

Domagalski, 2018, Changes concerning commute traffic distribution on a road network following the occurrence of a natural disaster—The example of a flood in the Mazovian Voivodeship (Eastern Poland), Transp. Res. Part D Transp. Environ., 65, 116, 10.1016/j.trd.2018.08.008

2018, Changes in transport accessibility as a result of flooding: A case study of the Mazovia Province (Eastern Poland), Environ. Hazards, 17, 56, 10.1080/17477891.2017.1343177

Gruntfest, E., and Handmer, J. (2001). Impacts of Flash Floods, Springer.

Singh, 2018, Vulnerability assessment of urban road network from urban flood, Int. J. Disaster Risk Reduct., 28, 237, 10.1016/j.ijdrr.2018.03.017

Brown, 2016, Building network-level resilience to resource disruption from flooding: Case studies from the Shetland Islands and Hurricane Sandy, E3S Web Conf., 7, 04008, 10.1051/e3sconf/20160704008

Hammond, 2015, Urban flood impact assessment: A state-of-the-art review, Urban Water J., 12, 14, 10.1080/1573062X.2013.857421

Pregnolato, 2017, The impact of flooding on road transport: A depth-disruption function, Transp. Res. Part D Transp. Environ., 55, 67, 10.1016/j.trd.2017.06.020

Chen, 2016, Non-recurrent congestion analysis using data-driven spatiotemporal approach for information construction, Transp. Res. Part C Emerg. Technol., 71, 19, 10.1016/j.trc.2016.07.002

2012, Przegląd literatury na temat zjawiska kongestii i zakłóceń ruchu w systemie transportowym miasta w aspekcie modelowania podróży, Zeszyty Naukowo Techniczne Stowarzyszenia Inżynierów i Techników Komunikacji w Krakowie Seria Materiały Konferencyjne, 98, 251

Skabardonis, 2013, Measuring recurrent and non-recurrent traffic congestion, Transp. Res. Rec., 1856, 118, 10.3141/1856-12

Taylor, 2012, Susilawati Remoteness and accessibility in the vulnerability analysis of regional road networks, Transp. Res. Part A Policy Pract., 46, 761, 10.1016/j.tra.2012.02.008

Adey, 2006, If mobility is everything then it is nothing: Towards a relational politics of (im) mobilities, Mobilities, 1, 75, 10.1080/17450100500489080

Hannam, 2006, Editorial: Mobilities, immobilities and moorings, Mobilities, 1, 1, 10.1080/17450100500489189

Komornicki, T. (2011). Przemiany Mobilności Codziennej Polaków na tle Rozwoju Motoryzacji, IGiPZ PAN.

Chen, 2007, Network-based accessibility measures for vulnerability analysis of degradable transportation networks, Netw. Spat. Econ., 7, 241, 10.1007/s11067-006-9012-5

2014, Dostępność transportowa Uniejowa–ujęcie regionalne, Biuletyn Uniejowski, 3, 67, 10.18778/2299-8403.03.05

Bartosiewicz, 2012, Powiązania transportowe w Łódzkim Obszarze Metropolitalnym, Studia KPZK PAN, 147, 105

Rosik, 2009, Wpływ zaludnienia w otoczeniu drogi, ukształtowania powierzchni terenu oraz natężenia ruchu na średnią prędkość jazdy samochodem osobowym, Transport Miejski i Regionalny, 10, 26

Komornicki, T., Śleszyński, P., Rosik, P., and Pomianowski, W. (2009). Dostępność Przestrzenna Jako Przesłanka Kształtowania Polskiej Polityki Transportowej, KPZK PAN.

2016, Teoretyczna i rzezcywista wewnętrzna dostępność transportowa Łodzi, Prace i Studia Geograficzne, 61, 95

Borowska-Stefańska, M., Kowalski, M., and Wiśniewski, S. (2019). Wewnętrzna samochodowa dostępność transportowa Łodzi w świetle pomiarów z inteligentnych systemów transportowych. Prace geograficzne., 159, in print.

Church, 2000, Mapping evacuation risk on transportation networks using a spatial optimization model, Transp. Res. Part C Emerg. Technol., 8, 321, 10.1016/S0968-090X(00)00019-X

Andrei, 2017, Accessibility to places of evacuation for inhabitants of flood-prone areas in Mazovia province, Geomat. Environ. Eng., 11, 31, 10.7494/geom.2017.11.3.31

Hsu, 2014, Risk-based spatial zone determination problem for stage-based evacuation operations, Transp. Res. Part C Emerg. Technol., 41, 73, 10.1016/j.trc.2014.01.013

Kongsomsaksakul, 2005, Shelter location-allocation model for flood evacuation planning, J. East. Asia Soc. Transp. Stud., 6, 4237

Borowska-Stefańska, M., Kowalski, M., and Wiśniewski, S. (2019). The impact of flood-related changes to mobility on potential accessibility in the region of Greater Poland, in review.

TRB (2010). HCM 2010: Highway Capacity Manual. National Research Council (U.S.), TRB.

Shand, T.D., Cox, R.J., and Blacka, M.J. (2011). Australian Rainfall and Runoff (AR&R). Revision Project 10: Appropriate Safety Criteria for Vehicles, Water Research Laboratory, The University of New South Wales. Report Number: P10/S2/020.

Penning-Rowsell, E., Priest, S., Parker, D., Morris, J., Tunstall, S., Viavattene, C., Chatteron, J., and Owen, D. (2013). Flood and Coastal Erosion Risk Management: A Manual for Economic Appraisal, Routledge.

2014, Dostępność czasowa i jej zastosowania, Prz. Geogr., 86, 171

Rosik, P. (2012). Dostępność Lądowa Przestrzeni Polski W Wymiarze Europejskim, IGiPZ PAN.

Stepniak, 2013, Accessibility improvement, territorial cohesion and spillovers: A multidimensional evaluation of two motorway sections in Poland, J. Transp. Geogr., 31, 154, 10.1016/j.jtrangeo.2013.06.017

Nelson, A. (2008). Travel Time to Major Cities: A Global Map of Accessibility: Poster + Datasets, Office for Official Publications of the European Communities.

Wegner, M. (2004). Overview of Land Use Transport Models: Handbook of Transport Geography and Spatial Systems, Elsevier.

Hunt, 2005, Current operational urban land-use-transport modelling frameworks: A review, Transp. Rev., 25, 329, 10.1080/0144164052000336470

Hackney, 2007, Predicting road system speeds using spatial structure variables and network characteristics, J. Geogr. Syst., 9, 397, 10.1007/s10109-007-0050-4

(2019, November 26). The Act of 20 July 2017 on Water Law, Available online: http://prawo.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20180002268.

(2019). PGWWP Państwowe Gospodarstwo Wodne Wody Polskie.

(2019, November 26). GUS Główny Urząd Statystyczny, Available online: https://stat.gov.pl/.

Commission of the European Communities (2007). Directive 2007/60/EC of the European parliament and of the council of 23 October 2007 on the assessment and management of flood risks. Off. J. Eur. Union, 288, 27–34.

(2007). GDDKiA Generalna Dyrekcja Dróg Krajowych i Autostrad.

2015, Zagospodarowanie terenów zagrożonych powodziami w gminach województwa łódzkiego, Przegląd Geograficzny, 87, 535

Borowska-Stefańska, M. (2015). Zagospodarowanie Terenów Zagrożonych Powodziami w Województwie Łódzkim, Łódź University Press.

Magnuszewski, 2006, Numerical estimation of flood zones in the Vistula River valley, Warsaw, Poland, IAHS-AISH Publ., 308, 191

Chang, 2010, Potential impacts of climate change on Flood-Induced Travel Disruptions: A Case Study of Portland, Oregon, USA, Ann. Assoc. Am. Geogr., 100, 938, 10.1080/00045608.2010.497110

Sohn, 2006, Evaluating the significance of highway network links under the flood damage: An accessibility approach, Transp. Res. Part A Policy Pract., 40, 491, 10.1016/j.tra.2005.08.006

Suarez, 2005, Impacts of flooding and climate change on urban transportation: A systemwide performance assessment of the Boston Metro Area, Transp. Res. Part D Transp. Environ., 10, 231, 10.1016/j.trd.2005.04.007

Brassel, 1979, A procedure to generate thiessen polygons, Geogr. Anal., 11, 289, 10.1111/j.1538-4632.1979.tb00695.x

Fiedler, 2003, Simple, practical method for determining station weights using Thiessen polygons and isohyetal maps, J. Hydrol. Eng., 8, 219, 10.1061/(ASCE)1084-0699(2003)8:4(219)

Han, 2006, Automated Thiessen polygon generation, Water Resour. Res., 42, 2, 10.1029/2005WR004365

Gissing, 2019, Influence of road characteristics on flood fatalities in Australia, Environ. Hazards, 7891, 1

Albano, 2014, A GIS-based model to estimate flood consequences and the degree of accessibility and operability of strategic emergency response structures in urban areas, Nat. Hazards Earth Syst. Sci., 14, 2847, 10.5194/nhess-14-2847-2014

Behrisch, M., and Weber, M. (2019). Flood impacts on road transportation using microscopic traffic modelling techniques. Simulating Urban Traffic Scenarios. Lecture Notes in Mobility, Springer.

Yin, 2016, Evaluating the impact and risk of pluvial flash flood on intra-urban road network: A case study in the city center of Shanghai, China, J. Hydrol., 537, 138, 10.1016/j.jhydrol.2016.03.037

Jacyna, 2014, Simulation model of transport system of Poland as a tool for developing sustainable transport, Arch. Transp., 31, 23, 10.5604/08669546.1146982

Kowalski, M., and Wiśniewski, S. (2019). Transport accessibility and mobility: A forecast of changes in the face of planned development of the network of expressways and motorways in Poland. Eur. Spat. Res. Policy, 26, in print.

Fotheringham, 1983, A new set of spatial-interaction models: The theory of competing destinations, Environ. Plan. A Econ. Space, 15, 15, 10.1177/0308518X8301500103

Spiekermann, K., and Schürmann, C. (2007). Update of Selected Potential Accessibility Indicators. Final Report for the ESPON 2006 Programme, Spiekermann & Wegener Stadt- und Regionalforschung.

Ingram, 1971, The concept of accessibility: A search for an operational form, Reg. Stud., 5, 101, 10.1080/09595237100185131

Geurs, K.T., and Ritsema van Eck, J.R. (2001). Accessibility Measures: Review and Applications. Evaluation of Accessibility Impacts of Land-Use Transportation Scenarios, and Related Social and Economic Impact, National Institute of Public Health and the Environment. RIVM Report 408505 006.

Gil, 2008, From flood risk to indirect flood impact: Evaluation of street network performance for effective management, response and repair, Proceedings of the WIT Transactions on Ecology and the Environment, Volume 118, 335, 10.2495/FRIAR080321

Goodwin, L.C. (2002). Weather Impacts on Arterial Traffic Flow, Mitretek Systems Inc.

Penning-Rowsell, E., Johnson, C., Tunstall, S., Tapsell, S., Morris, J., Chatteron, J., and Green, C. (2005). The Benefits of Flood and Coastal Risk Management: A Handbook of Assessment Techniques, Middlesex University Press.

Helbing, 2002, Micro-and macro-simulation of freeway traffic, Math. Comput. Model., 35, 517, 10.1016/S0895-7177(02)80019-X

Kerner, 2003, Microscopic theory of spatial-temporal congested traffic patterns at highway bottlenecks, Phys. Rev. E, 68, 36130, 10.1103/PhysRevE.68.036130

Garbutt, 2015, Mapping social vulnerability to flood hazard in Norfolk, England, Environ. Hazards, 14, 156, 10.1080/17477891.2015.1028018

Coles, 2017, Beyond ‘flood hotspots’: Modelling emergency service accessibility during flooding in York, UK, J. Hydrol., 546, 419, 10.1016/j.jhydrol.2016.12.013

Kowalski, 2019, Optimisation patterns for the process of a planned evacuation in the event of a flood, Environ. Hazards, 18, 335, 10.1080/17477891.2019.1593816

Giannotti, 2016, Accessibility and flood risk spatial indicators as measures of vulnerability, Revista Brasileira de Cartografia, 69, 869

Keay, 2005, The association of rainfall and other weather variables with road traffic volume in Melbourne, Australia, Accid. Anal. Prev., 37, 109, 10.1016/j.aap.2004.07.005

Barker, 1999, The impact of unseasonable or extreme weather on traffic activity within Lothian region, Scotland, J. Transp. Geogr., 7, 209, 10.1016/S0966-6923(98)00047-7

Doll, 2014, Adapting rail and road networks to weather extremes: Case studies for southern Germany and Austria, Nat. Hazards, 72, 63, 10.1007/s11069-013-0969-3

Nokkala, M., Leviäkangas, P., and Oiva, K. (2012). The Costs of Extreme Weather for the European Transport Systems. EWENT Project D4, VTT Technical Research Centre of Finland.

Gautam, K.P., and van der Hoek, E.E. (2003). Literature Study on Environmental Impact of Floods, Delft Cluster.