The Marine Hindcast and Forecast System for Diagnosis and Prediction of Hydrometeorological Characteristics of the Caspian Sea and Forecast Verification Based on Field Measurements

Russian Meteorology and Hydrology - Tập 45 - Trang 639-649 - 2020
V. V. Fomin1,2, N. A. Diansky1,2,3, E. A. Korshenko1, T. Yu. Vyruchalkina4
1Zubov State Oceanographic Institute, Moscow, Russia
2Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russia
3Lomonosov Moscow State University, Moscow, Russia
4Institute of Water Problems, Russian Academy of Sciences, Moscow, Russia

Tóm tắt

The possibility of using the Marine Hindcast and Forecast System (MHFS) developed at Zubov State Oceanographic Institute for short-term forecasting of hydrometeorological and ice characteristics of the Caspian Sea is demonstrated. The presented implementation of the system is based on the regional nonhydrostatic atmospheric model WRF (Weather Research and Forecast Model) and model of marine circulation INMOM (Institute of Numerical Mathematics Ocean Model). The system performance is assessed for the period from January 1 to March 31, 2017 by comparing the forecasts of hydrometeorological characteristics with observational data from hydrometeorological stations. The quality of reproducing sea ice characteristics based on ESIMO objective data is also evaluated.

Tài liệu tham khảo

V. I. Bychkova, K. G. Rubinshtein, and A. P. Makshtas, “Assessing the Sensitivity of the WRF-ARW Model to the Methods of Arctic Ice Cover Description,” Meteorol. Gidrol., No. 5 (2015) [Russ. Meteorol. Hydrol., No. 5, 40 (2015)]. Water Balance and Water Level Fluctuations in the Caspian Sea. Modeling and Forecasting (Triada LTD, Moscow, 2016) [in Russian]. Hydrometeorology and Hydrochemistry of the USSR Seas. The Project “The USSR Seas,” Vol. 5: The Caspian Sea (Gidrometeoizdat, St. Petersburg, 1992) [in Russian]. N. A. Diansky, Ocean Circulation Modeling and Investigation of Ocean Response to Short- and Long-period Atmospheric Forcing (Fizmatlit, Moscow, 2013) [in Russian]. N. A. Diansky, V. V. Fomin, and T. Yu. Vyruchalkina, “Modeling the Caspian Sea Circulation Using Ocean and Atmosphere Calculations in the MARS System,” Trudy GOIN, No. 217 (2016) [in Russian]. N. A. Diansky, V. V. Fomin, T. Yu. Vyruchalkina, and A. V. Gusev, “Simulation of the Caspian Sea Circulation with the Calculation of Atmospheric Forcing Using the WRF Model,” Trudy Karel’skogo Nauchnogo Tsentra Rossiiskoi Akademii Nauk, No. 5 (2016) [in Russian]. Unified State Information System on World Ocean Conditions (ESIMO), http://193.7.160.230/web/esimo/casp/ice/ice_casp.php [in Russian]. R. B. Zaripov, Yu. V. Martynova, V. N. Krupchatnikov, and A. P. Petrov, “Atmosphere Data Assimilation System for the Siberian Region with the WRF-ARW Model and Three-dimensional Variational Analysis WRF 3D-Var,” Meteorol. Gidrol., No. 12 (2016) [Russ. Meteorol. Hydrol., No. 11–12, 41 (2016)]. N. I. Ivkina, “Experience of Applying MIKE 21 Hydrodynamic Model for the Surge Prediction in the Caspian Sea,” Gidrometeorologiya i Ekologiya, No. 12 (1998) [in Russian]. I. M. Kabatchenko, G. V. Matushevsky, M. V. Reznikov, and M. M. Zaslavsky, “Numerical Modeling of Wind and Waves in a Secondary Cyclone at the Black Sea,” Meteorol. Gidrol., No. 5 (2001) [Russ. Meteorol. Hydrol., No. 5 (2001)]. Yu. V. Martynova, R. B. Zaripov, V. N. Krupchatnikov, and A. P. Petrov, “Estimation of the Quality of Atmospheric Dynamics Forecasting in the Siberian Region Using the WRF-ARW Mesoscale Model,” Meteorol. Gidrol., No. 7 (2014) [Russ. Meteorol. Hydrol., No. 7, 39 (2014)]. S. K. Popov, V. V. Batov, V. V. Elisov, and A. L. Lobov, “Advanced Technology of the Caspian Sea Currents and Level Forecasting,” Zashchita Okruzhayushchei Sredy v Neftegazovom Komplekse, No. 5 (2013) [in Russian]. S. K. Popov and A. L. Lobov, “Diagnosis and Forecast of the Caspian Sea Level with the Operational Hydrodynamic Model,” Meteorol. Gidrol., No. 9 (2017) [Russ. Meteorol. Hydrol., No. 9, 42 (2017)]. GD 52.27.284–91. Methodological Instructions. Performing Production (Operational) Tests of New and Improved Methods of Hydrometeorological and Heliogeophysical Forecasts (Gidrometeoizdat, St. Petersburg, 1991) [in Russian]. GD 52.27.759–2011. Manual on the Forecast Service, Section 3, Part 3: Service of Marine Hydrological Forecasts (Roshydromet, Moscow, 2011) [in Russian]. G. S. Rivin, I. A. Rozinkina, R. M. Vil’fand, D. Yu. Alferov, E. D. Astakhova, D. V. Blinov, A. Yu. Bundel’, E. V. Kazakova, A. A. Kirsanov, M. A. Nikitin, V. L. Perov, G. V. Surkova, A. P. Revokatova, M. V. Shatunova, and M. M. Chumakov, “The COSMO-Ru System of Nonhydrostatic Mesoscale Short-term Weather Forecasting of the Hydrometcenter of Russia: The Second Stage of Implementation and Development,” Meteorol. Gidrol., No. 6 (2015) [Russ. Meteorol. Hydrol., No. 6, 40 (2015)]. V. V. Fomin, N. A. Diansky, and T. Yu. Vyruchalkina, “Testing the System for Operational Diagnosis and Prediction of Hydrometeorological Parameters in the Caspian Sea Area,” inProceedings of International Conference “InterKarto/InterGis,” Vol. 24 (2018) [in Russian]. S. P. Shivareva, N. I. Ivkina, T. P. Stroeva, and E. I. Vasenina, “Calculation of Wind Surges on the Kazakhstan Coast of the Caspian Sea Based on the MIKE-21 Model,” in Proceedings of International Scientific Workshop on Ecological Problems in the Caspian Region, Moscow, December 1–3, 1999 [in Russian]. N. G. Yakovlev, “Reproduction of the Large-scale State of Water and Sea Ice in the Arctic Ocean in 1948–2002, Part I: Numerical Model,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 3, 45 (2009) [Izv., Atmos. Oceanic Phys., No. 3, 45 (2009)]. M. Baldauf, A. Seifert, J. Forstner, D. Majewski, M. Raschendorfer, and T. Reinhardt, “Operational Convective-scale Numerical Weather Prediction with the COSMO Model: Description and Sensitivities,” Mon. Wea. Rev., No. 12, 139 (2011). D. Brydon, S. San, and R. Bleck, “A New Approximation of the Equation of State for Seawater, Suitable for Numerical Ocean Models,” J. Geophys. Res., No. C1, 104 (1999). N. Diansky, V. Fomin, T. Vyruchalkina, and A. Gusev, “Numerical Simulation of the Caspian Sea Circulation Using the Marine and Atmospheric Research System,” Water Resour., No. 5, 45 (2018). P. Liu, A. P. Tsimpidi, Y. Hu, B. Stone, A. G. Russell, and A. Nenes, “Differences between Downscaling with Spectral and Grid Nudging Using WRF,” Atmos. Chem. Phys., 12 (2012). J. G. Powers, J. B. Klemp, W. C. Skamarock, C. A. Davis, J. Dudhia, D. O. Gill, J. L. Coen, D. J. Gochis, R. Ahmadov, S. E. Peckham, G. A. Grell, J. Michalakes, S. Trahan, S. G. Benjamin, C. R. Alexander, G. J. Dimego, W. Wang, C. S. Schwartz, G. S. Romine, Z. Liu, C. Snyder, F. Chen, M. J. Barlage, W. Yu, and M. G. Duda, “The Weather Research and Forecasting Model: Overview, System Efforts, and Future Directions,” Bull. Amer. Meteorol. Soc., 98 (2017). W. C. Skamarock, J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X.-Y. Huang, W. Wang, and J. G. Powers, A Description of the Advanced Research WRF, Version 3, NCAR Technical Note (2008). http://marine.copernicus.eu/services-portfolio/access-toproducts/?option=com_csw&view=details&product_id=SST_GLO_SST_L4_NRT_OBSERVATIONS_010_001. https://modis.gsfc.nasa.gov/about/. https://public.wmo.int/ru/. https://www.mikepoweredbydhi.com/products/mike-21. https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs.