Tiến Bộ Chính Trong Công Nghệ Pin Mặt Trời Perovskite Năm 2020–2021

Tianhao Wu1, Zhenzhen Qin1, Yanbo Wang1, Yongzhen Wu2, Wei Chen3, Shufang Zhang4, Molang Cai5, Songyuan Dai5, Jing Zhang6, Jian Liu7, Zhongmin Zhou8, Xiao Liu9, Hiroshi Segawa9, Hairen Tan10, Qunwei Tang11, Junfeng Fang12, Yaowen Li13, Liming Ding14, Zhijun Ning15, Yabing Qi16, Yiqiang Zhang17, Liyuan Han9,1
1State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
2Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Centre, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
3Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
4College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, People’s Republic of China
5Beijing Key Laboratory of Novel Thin-Film Solar Cells and State Key Laboratory of Alternate Electrical Power System With Renewable Energy Sources, North China Electric Power University, Beijing, People’s Republic of China
6Department of Microelectronic Science and Engineering, Ningbo University, Zhejiang, People’s Republic of China
7College of Chemical Engineering, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing, People’s Republic of China
8College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, People’s Republic of China
9Special Division of Environmental and Energy Science, Komaba Organization for Educational Excellence (KOMEX), College of Arts and Sciences, University of Tokyo, Tokyo, Japan
10National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing, People’s Republic of China
11College of Information Science and Technology, Jinan University, Guangzhou, People’s Republic of China
12School of Physics and Electronic Science, Engineering Research Center of Nanophotonics and Advanced Instrument, Ministry of Education, East China Normal University, Shanghai, People’s Republic of China
13Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, People’s Republic of China
14Center for Excellence in Nanoscience, Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, People’s Republic of China
15School of Physical Science and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
16Energy Materials and Surface Sciences Unit (EMSSU), Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan
17School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, People’s Republic of China

Tóm tắt

Các tế bào quang điện perovskite (PSCs) nổi lên như một công nghệ quang điện đầy hứa hẹn với hiệu suất cao và chi phí sản xuất thấp, đã thu hút sự chú ý từ khắp nơi trên thế giới. Cả hiệu suất và độ ổn định của PSCs đã tăng trưởng đều đặn trong những năm gần đây, và nghiên cứu về việc giảm thiểu rò rỉ chì và phát triển perovskite không chứa chì thân thiện với môi trường đang thúc đẩy quá trình thương mại hóa PSCs từng bước. Bài tổng quan này tóm tắt những tiến bộ chính của PSCs vào năm 2020 và 2021 từ các khía cạnh về hiệu suất, độ ổn định, thiết bị ghép nối dựa trên perovskite, và PSCs không chứa chì. Hơn nữa, một cuộc thảo luận ngắn về sự phát triển của mô-đun PSC và các thách thức đối với ứng dụng thực tiễn cũng được cung cấp.

Từ khóa

#Pin mặt trời perovskite #hiệu suất #độ ổn định #thiết bị ghép nối #mô-đun pin mặt trời

Tài liệu tham khảo

Y. Wang, T. Wu, J. Barbaud, W. Kong, D. Cui et al., Stabilizing heterostructures of soft perovskite semiconductors. Science 365(6454), 687–691 (2019). https://doi.org/10.1126/science.aax8018 Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen et al., Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13(7), 460–466 (2019). https://doi.org/10.1038/s41566-019-0398-2 E.H. Jung, N.J. Jeon, E.Y. Park, C.S. Moon, T.J. Shin et al., Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature 567(7749), 511–515 (2019). https://doi.org/10.1038/s41586-019-1036-3 T. Wu, Y. Wang, Z. Dai, D. Cui, T. Wang et al., Efficient and stable CsPbI3 solar cells via regulating lattice distortion with surface organic terminal groups. Adv. Mater. 31(24), 1900605 (2019). https://doi.org/10.1002/adma.201900605 Y. Deng, C.H. Van Brackle, X. Dai, J. Zhao, B. Chen et al., Tailoring solvent coordination for high-speed, room-temperature blading of perovskite photovoltaic films. Sci. Adv. 5(12), eaax7537 (2019). https://doi.org/10.1126/sciadv.aax7537 M. Green, E. Dunlop, J. Hohl Ebinger, M. Yoshita, N. Kopidakis et al., Solar cell efficiency tables (version 57). Prog. Photovoltaics 29(1), 3–15 (2021). https://doi.org/10.1002/pip.3371 X. Luo, T. Wu, Y. Wang, X. Lin, H. Su et al., Progress of all-perovskite tandem solar cells: the role of narrow-bandgap absorbers. Sci. China Chem. 64(2), 218–227 (2021). https://doi.org/10.1007/s11426-020-9870-4 S. Gu, R. Lin, Q. Han, Y. Gao, H. Tan et al., Tin and mixed lead-tin halide perovskite solar cells: progress and their application in tandem solar cells. Adv. Mater. 32(27), 1907392 (2020). https://doi.org/10.1002/adma.201907392 K. Xiao, R. Lin, Q. Han, Y. Hou, Z. Qin et al., All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nat. Energy 5(11), 870–880 (2020). https://doi.org/10.1038/s41560-020-00705-5 A. Al Ashouri, E. Köhnen, B. Li, A. Magomedov, H. Hempel et al., Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 370(6522), 1300–1309 (2020). https://doi.org/10.1126/science.abd4016 H. Su, T. Wu, D. Cui, X. Lin, X. Luo et al., The application of graphene derivatives in perovskite solar cells. Small Methods 4(10), 2000507 (2020). https://doi.org/10.1002/smtd.202000507 S. Wu, R. Chen, S. Zhang, B.H. Babu, Y. Yue et al., A chemically inert bismuth interlayer enhances long-term stability of inverted perovskite solar cells. Nat. Commun. 10(1), 1161 (2019). https://doi.org/10.1038/s41467-019-09167-0 N. Arora, M.I. Dar, A. Hinderhofer, N. Pellet, F. Schreiber et al., Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%. Science 358(6364), 768–771 (2017). https://doi.org/10.1126/science.aam5655 H. Chen, Q. Wei, M.I. Saidaminov, F. Wang, A. Johnston et al., Efficient and stable inverted perovskite solar cells incorporating secondary amines. Adv. Mater. 31(46), 1903559 (2019). https://doi.org/10.1002/adma.201903559 S. Bai, P. Da, C. Li, Z. Wang, Z. Yuan et al., Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature 571(7764), 245–250 (2019). https://doi.org/10.1038/s41586-019-1357-2 D. Wei, F. Ma, R. Wang, S. Dou, P. Cui et al., Ion-migration inhibition by the cation-pi interaction in perovskite materials for efficient and stable perovskite solar cells. Adv. Mater. 30(31), 1707583 (2018). https://doi.org/10.1002/adma.201707583 L. Liu, S. Huang, Y. Lu, P. Liu, Y. Zhao et al., Grain-boundary “patches” by in situ conversion to enhance perovskite solar cells stability. Adv. Mater. 30(29), 1800544 (2018). https://doi.org/10.1002/adma.201800544 N. Li, S. Tao, Y. Chen, X. Niu, C.K. Onwudinanti et al., Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nat. Energy 4(5), 408–415 (2019). https://doi.org/10.1038/s41560-019-0382-6 A. Mei, Y. Sheng, Y. Ming, Y. Hu, Y. Rong et al., Stabilizing perovskite solar cells to IEC61215:2016 standards with over 9,000-h operational tracking. Joule 4(12), 2646–2660 (2020). https://doi.org/10.1016/j.joule.2020.09.010 T. Wu, X. Liu, X. Luo, X. Lin, D. Cui et al., Lead-free tin perovskite solar cells. Joule 5(4), 863–886 (2021). https://doi.org/10.1016/j.joule.2021.03.001 K. Nishimura, M.A. Kamarudin, D. Hirotani, K. Hamada, Q. Shen et al., Lead-free tin-halide perovskite solar cells with 13% efficiency. Nano Energy 74, 104858 (2020). https://doi.org/10.1016/j.nanoen.2020.104858 C. Wang, Y. Zhang, F. Gu, Z. Zhao, H. Li et al., Illumination durability and high-efficiency Sn-based perovskite solar cell under coordinated control of phenylhydrazine and halogen ions. Matter 4(2), 709–721 (2021). https://doi.org/10.1016/j.matt.2020.11.012 X. Li, F. Zhang, H. He, J.J. Berry, K. Zhu et al., On-device lead sequestration for perovskite solar cells. Nature 578(7796), 555–558 (2020). https://doi.org/10.1038/s41586-020-2001-x X. Liu, T. Wu, J.Y. Chen, X. Meng, X. He et al., Templated growth of FASnI(3) crystals for efficient tin perovskite solar cells. Energy Environ. Sci. 13(9), 2896–2902 (2020). https://doi.org/10.1039/d0ee01845g C. Zhang, Y. Wang, X. Lin, T. Wu, Q. Han et al., Effects of A site doping on the crystallization of perovskite films. J. Mater. Chem. A 9(3), 1372–1394 (2021). https://doi.org/10.1039/D0TA08656H C. Shen, Y. Wu, S. Zhang, T. Wu, H. Tian et al., Stabilizing formamidinium lead iodide perovskite by sulfonyl-functionalized phenethylammonium salt via crystallization control and surface passivation. Sol. RRL 4(5), 2000069 (2020). https://doi.org/10.1002/solr.202000069 G. Kim, H. Min, K.S. Lee, D.Y. Lee, S.M. Yoon et al., Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells. Science 370(6512), 108–112 (2020). https://doi.org/10.1126/science.abc4417 H. Min, M. Kim, S.U. Lee, H. Kim, G. Kim et al., Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide. Science 366(6466), 749–753 (2019). https://doi.org/10.1126/science.aay7044 J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat et al., Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 592(7854), 381–385 (2021). https://doi.org/10.1038/s41586-021-03406-5 H. Fan, F. Li, P. Wang, Z. Gu, J.H. Huang et al., Methylamine-assisted growth of uniaxial-oriented perovskite thin films with millimeter-sized grains. Nat. Commun. 11(1), 5402 (2020). https://doi.org/10.1038/s41467-020-19199-6 Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu et al., Electron-hole diffusion lengths >175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347(6225), 967–970 (2015). https://doi.org/10.1126/science.aaa5760 T. Wu, Y. Wang, X. Li, Y. Wu, X. Meng et al., Efficient defect passivation for perovskite solar cells by controlling the electron density distribution of donor-π-acceptor molecules. Adv. Energy Mater. 9(17), 1803766 (2019). https://doi.org/10.1002/aenm.201803766 L.K. Ono, S. Liu, Y.B. Qi, Reducing detrimental defects for high-performance metal halide perovskite solar cells. Angew. Chem. Int. Ed. 59(17), 6676–6698 (2020). https://doi.org/10.1002/anie.201905521 B. Chen, P.N. Rudd, S. Yang, Y. Yuan, J. Huang, Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 48(14), 3842–3867 (2019). https://doi.org/10.1039/C8CS00853A X. Zheng, Y. Hou, C. Bao, J. Yin, F. Yuan et al., Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nat. Energy 5(2), 131–140 (2020). https://doi.org/10.1038/s41560-019-0538-4 Q. Wang, Q. Dong, T. Li, A. Gruverman, J. Huang, Thin insulating tunneling contacts for efficient and water-resistant perovskite solar cells. Adv. Mater. 28(31), 6734–6739 (2016). https://doi.org/10.1002/adma.201600969 J. Peng, D. Walter, Y. Ren, M. Tebyetekerwa, Y. Wu et al., Nanoscale localized contacts for high fill factors in polymer-passivated perovskite solar cells. Science 371(6527), 390–395 (2021). https://doi.org/10.1126/science.abb8687 M. Jeong, I.W. Choi, E.M. Go, Y. Cho, M. Kim et al., Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science 369(6511), 1615–1620 (2020). https://doi.org/10.1126/science.abb7167 J.J. Yoo, G. Seo, M.R. Chua, T.G. Park, Y. Lu et al., Efficient perovskite solar cells via improved carrier management. Nature 590(7847), 587–593 (2021). https://doi.org/10.1038/s41586-021-03285-w Y. Yuan, J. Huang, Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Acc. Chem. Res. 49(2), 286–293 (2016). https://doi.org/10.1021/acs.accounts.5b00420 P. Delugas, C. Caddeo, A. Filippetti, A. Mattoni, Thermally activated point defect diffusion in methylammonium lead trihalide: anisotropic and ultrahigh mobility of iodine. J. Phys. Chem. Lett. 7(13), 2356–2361 (2016). https://doi.org/10.1021/acs.jpclett.6b00963 M.I. Saidaminov, J. Kim, A. Jain, R. Quintero-Bermudez, H. Tan et al., Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air. Nat. Energy 3(8), 648–654 (2018). https://doi.org/10.1038/s41560-018-0192-2 Y.H. Lin, N. Sakai, P. Da, J. Wu, H.C. Sansom et al., A piperidinium salt stabilizes efficient metal-halide perovskite solar cells. Science 369(6499), 96–102 (2020). https://doi.org/10.1126/science.aba1628 S.G. Motti, D. Meggiolaro, A.J. Barker, E. Mosconi, C.A.R. Perini et al., Controlling competing photochemical reactions stabilizes perovskite solar cells. Nat. Photonics 13(8), 532–539 (2019). https://doi.org/10.1038/s41566-019-0435-1 K. Wang, J. Liu, J. Yin, E. Aydin, G.T. Harrison et al., Defect passivation in perovskite solar cells by cyano-based π-conjugated molecules for improved performance and stability. Adv. Funct. Mater. 30(35), 2002861 (2020). https://doi.org/10.1002/adfm.202002861 S. Xiong, J. Song, J. Yang, J. Xu, M. Zhang et al., Defect-passivation using organic dyes for enhanced efficiency and stability of perovskite solar cells. Sol. RRL 4(5), 1900529 (2020). https://doi.org/10.1002/solr.201900529 Z. Yang, J.J. Dou, S. Kou, J.L. Dang, Y.Q. Ji et al., Multifunctional phosphorus-containing lewis acid and base passivation enabling efficient and moisture-stable perovskite solar cells. Adv. Funct. Mater. 30(15), 1910710 (2020). https://doi.org/10.1002/adfm.201910710 Z. Liu, L. Qiu, L.K. Ono, S. He, Z. Hu et al., A holistic approach to interface stabilization for efficient perovskite solar modules with over 2,000-hour operational stability. Nat. Energy 5(8), 596–604 (2020). https://doi.org/10.1038/s41560-020-0653-2 Y. Sha, E. Bi, Y. Zhang, P. Ru, W. Kong et al., A scalable integrated dopant-free heterostructure to stabilize perovskite solar cell modules. Adv. Energy Mater. 11(5), 2003301 (2021). https://doi.org/10.1002/aenm.202003301 B. Hailegnaw, S. Kirmayer, E. Edri, G. Hodes, D. Cahen, Rain on methylammonium lead iodide based perovskites: possible environmental effects of perovskite solar cells. J. Phys. Chem. Lett. 6(9), 1543–1547 (2015). https://doi.org/10.1021/acs.jpclett.5b00504 Y. Jiang, L. Qiu, E.J. Juarez-Perez, L.K. Ono, Z. Hu et al., Reduction of lead leakage from damaged lead halide perovskite solar modules using self-healing polymer-based encapsulation. Nat. Energy 4(7), 585–593 (2019). https://doi.org/10.1038/s41560-019-0406-2 S. Chen, Y. Deng, H. Gu, S. Xu, S. Wang et al., Trapping lead in perovskite solar modules with abundant and low-cost cation-exchange resins. Nat. Energy 5(12), 1003–1011 (2020). https://doi.org/10.1038/s41560-020-00716-2 D. Kim, H.J. Jung, I.J. Park, B.W. Larson, S.P. Dunfield et al., Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites. Science 368(6487), 155–160 (2020). https://doi.org/10.1126/science.aba3433 B. Chen, Z. Yu, K. Liu, X. Zheng, Y. Liu et al., Grain engineering for perovskite/silicon monolithic tandem solar cells with efficiency of 25.4%. Joule 3(1), 177–190 (2019). https://doi.org/10.1016/j.joule.2018.10.003 Y. Wang, X. Liu, T. Zhang, X. Wang, M. Kan et al., The role of dimethylammonium iodide in CsPbI3 perovskite fabrication: additive or dopant? Angew. Chem. Int. Ed. 58(46), 16691–16696 (2019). https://doi.org/10.1002/anie.201910800 S. Gharibzadeh, B. Abdollahi Nejand, M. Jakoby, T. Abzieher, D. Hauschild et al., Record open-circuit voltage wide-bandgap perovskite solar cells utilizing 2D/3D perovskite heterostructure. Adv. Energy Mater. 9(21), 1803699 (2019). https://doi.org/10.1002/aenm.201803699 J. Xu, C.C. Boyd, Z.J. Yu, A.F. Palmstrom, D.J. Witter et al., Triple-halide wide–band gap perovskites with suppressed phase segregation for efficient tandems. Science 367(6482), 1097–1104 (2020). https://doi.org/10.1126/science.aaz5074 I.L. Braly, R.J. Stoddard, A. Rajagopal, A.R. Uhl, J.K. Katahara et al., Current-induced phase segregation in mixed halide hybrid perovskites and its impact on two-terminal tandem solar cell design. ACS Energy Lett. 2(8), 1841–1847 (2017). https://doi.org/10.1021/acsenergylett.7b00525 M.C. Brennan, S. Draguta, P.V. Kamat, M. Kuno, Light-induced anion phase segregation in mixed halide perovskites. ACS Energy Lett. 3(1), 204–213 (2018). https://doi.org/10.1021/acsenergylett.7b01151 Y. Hou, E. Aydin, M. De. Bastiani, C. Xiao, F.H. Isikgor et al., Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon. Science 367(6482), 1135–1140 (2020). https://doi.org/10.1126/science.aaz3691 B. Chen, Z.J. Yu, S. Manzoor, S. Wang, W. Weigand et al., Blade-coated perovskites on textured silicon for 26%-efficient monolithic perovskite/silicon tandem solar cells. Joule 4(4), 850–864 (2020). https://doi.org/10.1016/j.joule.2020.01.008 J.H. Heo, S.H. Im, CH3NH3PbBr3-CH3NH3PbI3 perovskite-perovskite tandem solar cells with exceeding 2.2 V open circuit voltage. Adv. Mater. 28(25), 5121–5125 (2016). https://doi.org/10.1002/adma.201501629 J. Im, C.C. Stoumpos, H. Jin, A.J. Freeman, M.G. Kanatzidis, Antagonism between spin-orbit coupling and steric effects causes anomalous band gap evolution in the perovskite photovoltaic materials CH3NH3Sn1-xPbxI3. J. Phys. Chem. Lett. 6(17), 3503–3509 (2015). https://doi.org/10.1021/acs.jpclett.5b01738 R. Lin, K. Xiao, Z. Qin, Q. Han, C. Zhang et al., Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(II) oxidation in precursor ink. Nat. Energy 4(10), 864–873 (2019). https://doi.org/10.1038/s41560-019-0466-3 K. Xiao, J. Wen, Q. Han, R. Lin, Y. Gao et al., Solution-processed monolithic all-perovskite triple-junction solar cells with efficiency exceeding 20%. ACS Energy Lett. 5(9), 2819–2826 (2020). https://doi.org/10.1021/acsenergylett.0c01184 M.G. Ju, M. Chen, Y. Zhou, J. Dai, L. Ma et al., Toward eco-friendly and stable perovskite materials for photovoltaics. Joule 2(7), 1231–1241 (2018). https://doi.org/10.1016/j.joule.2018.04.026 B. Saparov, F. Hong, J.P. Sun, H.S. Duan, W. Meng et al., Thin-film preparation and characterization of Cs3Sb2I9: a lead-free layered perovskite semiconductor. Chem. Mater. 27(16), 5622–5632 (2015). https://doi.org/10.1021/acs.chemmater.5b01989 D. Cortecchia, H.A. Dewi, J. Yin, A. Bruno, S. Chen et al., Lead-free MA2CuClxBr4–x hybrid perovskites. Inorg. Chem. 55(3), 1044–1052 (2016). https://doi.org/10.1021/acs.inorgchem.5b01896 T. Krishnamoorthy, H. Ding, C. Yan, W.L. Leong, T. Baikie et al., Lead-free germanium iodide perovskite materials for photovoltaic applications. J. Mater. Chem. A 3(47), 23829–23832 (2015). https://doi.org/10.1039/C5TA05741H Z. Shao, T. Le. Mercier, M.B. Madec, T. Pauporté, Exploring AgBixI3x+1 semiconductor thin films for lead-free perovskite solar cells. Mater. Design 141, 81–87 (2018). https://doi.org/10.1016/j.matdes.2017.12.036 S. Öz, J.C. Hebig, E. Jung, T. Singh, A. Lepcha et al., Zero-dimensional (CH3NH3)3Bi2I9 perovskite for optoelectronic applications. Sol. Energy Mater. Sol. C 158, 195–201 (2016). https://doi.org/10.1016/j.solmat.2016.01.035 T. Wu, X. Liu, X. He, Y. Wang, X. Meng et al., Efficient and stable tin-based perovskite solar cells by introducing π-conjugated Lewis base. Sci. China Chem. 63(1), 107–115 (2020). https://doi.org/10.1007/s11426-019-9653-8 T. Nakamura, S. Yakumaru, M.A. Truong, K. Kim, J. Liu et al., Sn(iv)-free tin perovskite films realized by in situ Sn(0) nanoparticle treatment of the precursor solution. Nat. Commun. 11(1), 3008 (2020). https://doi.org/10.1038/s41467-020-16726-3 X. Meng, Y. Wang, J. Lin, X. Liu, X. He et al., Surface-controlled oriented growth of FASnI3 crystals for efficient lead-free perovskite solar cells. Joule 4(4), 902–912 (2020). https://doi.org/10.1016/j.joule.2020.03.007 X. Liu, Y. Wang, T. Wu, X. He, X. Meng et al., Efficient and stable tin perovskite solar cells enabled by amorphous-polycrystalline structure. Nat. Commun. 11(1), 2678 (2020). https://doi.org/10.1038/s41467-020-16561-6 X. Jiang, F. Wang, Q. Wei, H. Li, Y. Shang et al., Ultra-high open-circuit voltage of tin perovskite solar cells via an electron transporting layer design. Nat. Commun. 11(1), 1245 (2020). https://doi.org/10.1038/s41467-020-15078-2 W. Hu, X. He, Z. Fang, W. Lian, Y. Shang et al., Bulk heterojunction gifts bismuth-based lead-free perovskite solar cells with record efficiency. Nano Energy 68, 104362 (2020). https://doi.org/10.1016/j.nanoen.2019.104362 A. Singh, P.T. Lai, A. Mohapatra, C.Y. Chen, H.W. Lin et al., Panchromatic heterojunction solar cells for Pb-free all-inorganic antimony based perovskite. Chem. Eng. J. 419, 129424 (2021). https://doi.org/10.1016/j.cej.2021.129424 N. Rolston, W.J. Scheideler, A.C. Flick, J.P. Chen, H. Elmaraghi et al., Rapid open-air fabrication of perovskite solar modules. Joule 4(12), 2675–2692 (2020). https://doi.org/10.1016/j.joule.2020.11.001 R. Vidal, J.A. Alberola-Borràs, S.N. Habisreutinger, J.L. Gimeno-Molina, D.T. Moore et al., Assessing health and environmental impacts of solvents for producing perovskite solar cells. Nat. Sustain. 4(3), 277–285 (2021). https://doi.org/10.1038/s41893-020-00645-8 G. Tong, D.Y. Son, L.K. Ono, Y. Liu, Y. Hu et al., Scalable fabrication of >90 cm2 perovskite solar modules with >1000 h operational stability based on the intermediate phase strategy. Adv. Energy Mater. 11(10), 2003712 (2021). https://doi.org/10.1002/aenm.202003712 H. Chen, F. Ye, W. Tang, J. He, M. Yin et al., A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules. Nature 550(7674), 92–95 (2017). https://doi.org/10.1038/nature23877 X. Cao, G. Zhang, Y. Cai, L. Jiang, X. He et al., All green solvents for fabrication of CsPbBr3 films for efficient solar cells guided by the hansen solubility theory. Sol. RRL 4(4), 2000008 (2020). https://doi.org/10.1002/solr.202000008 L. Shi, M.P. Bucknall, T.L. Young, M. Zhang, L. Hu et al., Gas chromatography–mass spectrometry analyses of encapsulated stable perovskite solar cells. Science 368(6497), eaba2412 (2020). https://doi.org/10.1126/science.aba2412 M.V. Khenkin, E.A. Katz, A. Abate, G. Bardizza, J.J. Berry et al., Consensus statement for stability assessment and reporting for perovskite photovoltaics based on isos procedures. Nat. Energy 5(1), 35–49 (2020). https://doi.org/10.1038/s41560-019-0529-5 M. Konstantakou, T. Stergiopoulos, A critical review on tin halide perovskite solar cells. J. Mater. Chem. A 5(23), 11518–11549 (2017). https://doi.org/10.1039/C7TA00929A E.W.G. Diau, E. Jokar, M. Rameez, Strategies to improve performance and stability for tin-based perovskite solar cells. ACS Energy Lett. 4(8), 1930–1937 (2019). https://doi.org/10.1021/acsenergylett.9b01179 J. Cao, F. Yan, Recent progress in tin-based perovskite solar cells. Energy Environ. Sci. 14(3), 1286–1325 (2021). https://doi.org/10.1039/D0EE04007J X. Meng, T. Wu, X. Liu, X. He, T. Noda et al., Highly reproducible and efficient fasni3 perovskite solar cells fabricated with volatilizable reducing solvent. J. Phys. Chem. Lett. 11(8), 2965–2971 (2020). https://doi.org/10.1021/acs.jpclett.0c00923 X. He, T. Wu, X. Liu, Y. Wang, X. Meng et al., Highly efficient tin perovskite solar cells achieved in a wide oxygen concentration range. J. Mater. Chem. A 8(5), 2760–2768 (2020). https://doi.org/10.1039/C9TA13159K