The MLL recombinome of acute leukemias in 2017

Leukemia - Tập 32 Số 2 - Trang 273-284 - 2018
Claus Meyer1, Thomas Burmeister2, Daniela Gröger2, Grigory Tsaur3, Л. Г. Фечина3, Aline Renneville4, Rosemary Sutton5, Nicola C. Venn5, Mariana Emerenciano6, Maria S. Pombo‐de‐Oliveira6, Caroline Barbieri Blunck6, Bruno A. Lopes6, Jan Zuna7, Jan Trka7, Paola Ballerini8, Hélène Lapillonne8, Marc De Braekeleer9, Giovanni Cazzaniga10, L Corral Abascal10, Vincent H. J. van der Velden11, Éric Delabesse12, T S Park13, Seung Hwan Oh14, Maria Luiza Macedo Silva15, T Lund-Aho16, Vesa Juvonen17, Andrew S. Moore18, Olaf Heidenreich19, Josef Vormoor20, Elena Zerkalenkova21, Yulia Olshanskaya21, Clara Bueno22, Pablo Menéndez22, Andrea Teigler‐Schlegel23, Udo zur Stadt24, Jana Lentes25, Gudrun Göhring25, Anatoly Kustanovich26, Olga Aleinikova26, Beat W. Schäfer27, Susanne Kubetzko27, H O Madsen28, Bernd Gruhn29, Ximo Duarte30, Paula Gameiro31, Éric Lippert32, Audrey Bidet32, J M Cayuela33, Emmanuelle Clappier33, Cristina N. Alonso34, C. Michel Zwaan35, Marry M. van den Heuvel‐Eibrink35, Shai Izraeli36, Luba Trakhtenbrot36, Paul A. Archer37, Jerry Hancock37, Anja Möricke38, Julia Alten38, Martin Schrappe38, Martin Stanulla39, Sabine Strehl40, Andishe Attarbaschi40, Michael Dworzak40, Oskar A. Haas40, Renate Panzer‐Grümayer40, Łukasz Sędek41, Tomasz Szczepański42, Aurélie Caye43, Lydia Suarez43, Hélène Cavé43, Rolf Marschalek1
1Institute of Pharmaceutical Biology/Diagnostic Center of Acute Leukemia (DCAL), Goethe-University, Frankfurt/Main, Germany
2Charité—Department of Hematology, Oncology and Tumorimmunology, Berlin, Germany
3Regional Children Hospital 1, Research Institute of Medical Cell Technologies, Pediatric Oncology and Hematology Center, Ural Federal University, Ekaterinburg, Russia
4Laboratory of Hematology, Biology and Pathology Center, CHRU of Lille,
5Children’s Cancer Institute Australia, Uinversity of NSW Sydney, Sydney, New South Wales, Australia
6Pediatric Hematology-Oncology Program—Research Center, Instituto Nacional de Cancer Rio de Janeiro, Rio de Janeiro, Brazil
7Department of Paediatric Haematology/Oncology, CLIP, Charles University Prague, 2nd Faculty of Medicine, Prague, Czech Republic
8Biological Hematology, AP-HP A. Trousseau, Pierre et Marie Curie University, Paris, France
9Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé, Laboratoire d'Histologie, Embryologie et Cytogénétique & INSERM-U1078, Brest, France
10Centro Ricerca Tettamanti, Clinica Pediatrica, Univ. Milano Bicocca, Monza, Italy
11Department of Immunology, Erasmus MC, Rotterdam, The Netherlands
12CHU Purpan, Laboratoire d'Hématologie, Toulouse, France
13Department of Laboratory Medicine, School of Medicine, Kyung Hee University, Seoul, Korea
14Department of Laboratory Medicine, Inje University College of Medicine, Busan, Korea
15Cytogenetics Department, Bone Marrow Transplantation Unit, National Cancer Institute (INCA), Rio de Janeiro, Brazil
16Laboratory of Clinical Genetics, Fimlab Laboratories, Tampere, Finland
17Department of Clinical Chemistry and TYKSLAB, University of Turku and Turku University Central Hospital, Turku, Finland
18The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Queensland, Australia
19Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
20The Great North Children’s Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
21Dmitry Rogachev National Scientific and Practical Center of Pediatric Hematology, Oncology and Immunology, Moscow
22Department of Biomedicine, Josep Carreras Leukemia Research Institute, School of Medicine, University of Barcelona, Barcelona, Spain
23Department of Experimental Pathology and Cytology, Institute of Pathology, Giessen, Germany
24Center for Diagnostic, University Medical Center Hamburg Eppendorf, Hamburg, Germany
25Department of Human Genetics, Hannover Medical School, Hanover, Germany
26Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Republic of Belarus
27Department of Oncology, University Children's Hospital Zurich, Zurich, Switzerland
28Department of Clinical Immunology, University Hospital Rigshospitalet, Copenhagen, Denmark
29Department of Pediatrics, Jena University Hospital, Jena, Germany
30Department of Pediatrics, Portuguese Institute of Oncology of Lisbon, Lisbon, Portugal
31Hemato-Oncology Laboratory, UIPM, Portuguese Institute of Oncology of Lisbon, Lisbon, Portugal
32Hématologie Biologique, CHU de Brest and INSERM U1078, Université de Bretagne Occidentale, Brest, France
33Laboratoire d'hématologie, AP-HP Saint-Louis, Paris Diderot University, Paris, France
34Hospital Nacional de Pediatría Prof Dr J. P. Garrahan, Servcio de Hemato-Oncología, Buenos Aires, Argentina
35Department of Pediatric Oncology/Hematology, Erasmus MC/Sophia Children's Hospital, Rotterdam, The Netherlands;
36Department of Pediatric Hemato-Oncology and the Cancer Research Center, The Chaim Sheba Medical Center, Tel Aviv, Israel
37Bristol Genetics Laboratory, Pathology Sciences, Southmead Hospital, North Bristol NHS Trust, Bristol, UK
38Department of Pediatrics, University Medical Centre Schleswig-Holstein, Kiel, Germany
39Department of Pediatrics, MHH, Hanover, Germany
40Department of Pediatrics, Children's Cancer Research Institute and St. Anna Children's Hospital, Medical University of Vienna, Vienna, Austria
41Department of Microbiology and Immunology, Medical University of Silesia, Zabrze, Poland
42Department of Pediatric Hematology and Oncology, Medical University of Silesia, Zabrze, Poland
43Department of Genetics, AP-HP Robert Debré, Paris Diderot University, Paris, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

Pui CH, Gaynon PS, Boyett JM, Chessells JM, Baruchel A, Kamps W et al. Outcome of treatment in childhood acute lymphoblastic leukaemia with rearrangements of the 11q23 chromosomal region. Lancet 2002; 359: 1909–1915.

Pui CH, Chessells JM, Camitta B, Baruchel A, Biondi A, Boyett JM et al. Clinical heterogeneity in childhood acute lymphoblastic leukemia with 11q23 rearrangements. Leukemia 2003; 17: 700–706.

Balgobind BV, Raimondi SC, Harbott J, Zimmermann M, Alonzo TA, Auvrignon A et al. Novel prognostic subgroups in childhood 11q23/MLL-rearranged acute myeloid leukemia: results of an international retrospective study. Blood 2009; 114: 2489–2496.

Szczepański T, Harrison CJ, van Dongen JJ . Genetic aberrations in paediatric acute leukaemias and implications for management of patients. Lancet Oncol 2010; 11: 880–889.

Burmeister T, Marschalek R, Schneider B, Meyer C, Gökbuget N, Schwartz S et al. Monitoring minimal residual disease by quantification of genomic chromosomal breakpoint sequences in acute leukemias with MLL aberrations. Leukemia 2006; 20: 451–457.

van der Velden VH, Corral L, Valsecchi MG, Jansen MW, De Lorenzo P, Cazzaniga G et al. Prognostic significance of minimal residual disease in infants with acute lymphoblastic leukemia treated within the Interfant-99 protocol. Leukemia 2009; 23: 1073–1079.

Yeoh AE, Ariffin H, Chai EL, Kwok CS, Chan YH, Ponnudurai K et al. Minimal residual disease-guided treatment deintensification for children with acute lymphoblastic leukemia: results from the Malaysia-Singapore acute lymphoblastic leukemia 2003 study. J Clin Oncol 2012; 30: 2384–2392.

Johansson B, Moorman AV, Secker-Walker LM . Derivative chromosomes of 11q23-translocations in hematologic malignancies. European 11q23 Workshop participants. Leukemia 1998; 12: 828–833.

Heerema NA, Sather HN, Ge J, Arthur DC, Hilden JM, Trigg ME et al. Cytogenetic studies of infant acute lymphoblastic leukemia: poor prognosis of infants with t(4;11)—a report of the Children's Cancer Group. Leukemia 1999; 13: 679–686.

Van der Burg M, Beverloo HB, Langerak AW, Wijsman J, van Drunen E, Slater R et al. Rapid and sensitive detection of all types of MLL gene translocations with a single FISH probe set. Leukemia 1999; 13: 2107–2113.

van der Burg M, Poulsen TS, Hunger SP, Beverloo HB, Smit EM, Vang-Nielsen K et al. Split-signal FISH for detection of chromosome aberrations in acute lymphoblastic leukemia. Leukemia 2004; 18: 895–908.

Harrison CJ, Moorman AV, Barber KE, Broadfield ZJ, Cheung KL, Harris RL et al. Interphase molecular cytogenetic screening for chromosomal abnormalities of prognostic significance in childhood acute lymphoblastic leukaemia: a UK Cancer Cytogenetics Group Study. Br J Haematol 2005; 129: 520–530.

Meyer C, Schneider B, Reichel M, Angermueller S, Strehl S, Schnittger S et al. Diagnostic tool for the identification of MLL rearrangements including unknown partner genes. Proc Natl Acad Sci USA 2005; 102: 449–454.

Meyer C, Schneider B, Jakob S, Strehl S, Schnittger S, Schoch C et al. The MLL recombinome of acute leukemias. Leukemia 2006; 20: 777–784.

Meyer C, Kowarz E, Hofmann J, Renneville A, Zuna J, Trka J et al. New insights into the MLL recombinome of acute leukemias. Leukemia 2009; 23: 1490–1499.

Meyer C, Hofmann J, Burmeister T, Gröger D, Park TS, Emerenciano M et al. The MLL recombinome of acute leukemia in 2013. Leukemia 2013; 27: 2165–2176.

Daser A, Rabbitts TH . The versatile mixed lineage leukaemia gene MLL and its many associations in leukaemogenesis. Semin Cancer Biol 2005; 15: 175–188.

Krivtsov AV, Armstrong SA . MLL translocations, histone modifications and leukaemia stem-cell development. Nat Rev Cancer 2007; 7: 823–833.

Burmeister T, Meyer C, Gröger D, Hofmann J, Marschalek R . Evidence-based RT-PCR methods for the detection of the 8 most common MLL aberrations in acute leukemias. Leuk Res 2015; 39: 242–247.

Strissel PL, Strick R, Rowley JD, Zeleznik-Le NJ . An in vivo topoisomerase II cleavage site and a DNase I hypersensitive site colocalize near exon 9 in the MLL breakpoint cluster region. Blood 1998; 92: 3793–3803.

Stanulla M, Wang J, Chervinsk DS, Thandla S, Aplan PD . DNA cleavage within the MLL breakpoint cluster region is a specific event which occurs as part of higher-order chromatin fragmentation during the initial stages of apoptosis. Mol Cell Biol 1997; 17: 4070–4079.

Scharf S, Zech J, Bursen A, Schraets D, Oliver PL, Kliem S et al. Transcription linked to recombination: a gene-internal promoter coincides with the recombination hot spot II of the human MLL gene. Oncogene 2007; 26: 1361–1371.

Felix CA . Leukemias related to treatment with DNA topoisomerase II inhibitors. Med Pediatr Oncol 2001; 36: 525–535.

Emerenciano M, Meyer C, Mansur MB, Marschalek R, Pombo-de-Oliveira MS, . The Brazilian Collaborative Study Group of Infant Acute Leukaemia. The distribution of MLL breakpoints correlates with outcome in infant acute leukaemia. Br J Haematol 2013; 161: 224–236.

Fair K, Anderson M, Bulanova E, Mi H, Tropschug M, Diaz MO . Protein interactions of the MLL PHD fingers modulate MLL target gene regulation in human cells. Mol Cell Biol 2001; 21: 3589–3597.

Xia ZB, Anderson M, Diaz MO, Zeleznik-Le NJ . MLL repression domain interacts with histone deacetylases, the polycomb group proteins HPC2 and BMI-1, and the corepressor C-terminal-binding protein. Proc Natl Acad Sci USA 2003; 100: 8342–8347.

Chang PY, Hom RA, Musselman CA, Zhu L, Kuo A, Gozani O et al. Binding of the MLL PHD3 finger to histone H3K4me3 is required for MLL-dependent gene transcription. J Mol Biol 2010; 400: 137–144.

Wang Z, Song J, Milne TA, Wang GG, Li H, Allis CD et al. Pro isomerization in MLL1 PHD3-bromo cassette connects H3K4me readout to CyP33 and HDAC-mediated repression. Cell 2010; 141: 1183–1194.

Wang J, Muntean AG, Hess JL . ECSASB2 mediates MLL degradation during hematopoietic differentiation. Blood 2012; 119: 1151–1161.

Wang J, Muntean AG, Wu L, Hess JL . A subset of mixed lineage leukemia proteins has plant homeodomain (PHD)-mediated E3 ligase activity. J Biol Chem 2012; 287: 43410–43416.

Rössler T, Marschalek R . An alternative splice process renders the MLL protein either into a transcriptional activator or repressor. Pharmazie 2013; 68: 601–607.

Grow EJ, Wysocka J . Flipping MLL1's switch one proline at a time. Cell 2010; 141: 1108–1110.

Meyer C, Kowarz E, Yip SF, Wan TS, Chan TK, Dingermann T et al. A complex MLL rearrangement identified five years after initial MDS diagnosis is causing out-of-frame fusions whithout progression to acute leukemia. Cancer Genet 2011; 204: 557–562.

Mori T, Nishimura N, Hasegawa D, Kawasaki K, Kosaka Y, Uchide K et al. Persistent detection of a novel MLL-SACM1L rearrangement in the absence of leukemia. Leuk Res 2010; 34: 1398–1401.

Kim M, Semple I, Kim B, Kiers A, Nam S, Park HW et al. Drosophila Gyf/GRB10 interacting GYF protein is an autophagy regulator that controls neuron and muscle homeostasis. Autophagy 2015; 11: 1358–1372.

Kryszke MH, Adjeriou B, Liang F, Chen H, Dautry F . Post-transcriptional gene silencing activity of human GIGYF2. Biochem Biophys Res Commun 2016; 475: 289–294.

Morita M, Ler LW, Fabian MR, Siddiqui N, Mullin M, Henderson VC et al. A novel 4EHP-GIGYF2 translational repressor complex is essential for mammalian development. Mol Cell Biol 2012; 32: 3585–3593.

Chen MH, Liu Y, Wang YL, Liu R, Xu BH, Zhang F et al. KIF2A regulates the spindle assembly and the metaphase I-anaphase I transition in mouse oocyte. Sci Rep 2016; 6: 39337.

Yi ZY, Ma XS, Liang QX, Zhang T, Xu ZY, Meng TG et al. Kif2a regulates spindle organization and cell cycle progression in meiotic oocytes. Sci Rep 2016; 6: 38574.

Cavallin M, Bijlsma EK, El Morjani A, Moutton S, Peeters EA, Maillard C et al. Recurrent KIF2A mutations are responsible for classic lissencephaly. Neurogenetics 2017; 18: 73–79.

Watanabe T, Kakeno M, Matsui T, Sugiyama I, Arimura N, Matsuzawa K et al. TTBK2 with EB1/3 regulates microtubule dynamics in migrating cells through KIF2A phosphorylation. J Cell Biol 2015; 210: 737–751.

Selmansberger M, Feuchtinger A, Zurnadzhy L, Michna A, Kaiser JC, Abend M et al. CLIP2 as radiation biomarker in papillary thyroid carcinoma. Oncogene 2015; 34: 3917–3925.

Majeed SR, Vasudevan L, Chen CY, Luo Y, Torres JA, Evans TM et al. Clathrin light chains are required for the gyrating-clathrin recycling pathway and thereby promote cell migration. Nat Commun 2014; 5: 3891.

Miserey-Lenkei S, Couëdel-Courteille A, Del Nery E, Bardin S, Piel M, Racine V et al. A role for the Rab6A' GTPase in the inactivation of the Mad2-spindle checkpoint. EMBO J 2006; 25: 278–289.

Yi S, Yu M, Yang S, Miron RJ, Zhang Y . Tcf12, a member of basic helix-loop-helix transcription factors, mediates bone marrow mesenchymal stem cell osteogenic differentiation in vitro and in vivo. Stem Cells 2017; 35: 386–397.

Labreche K, Simeonova I, Kamoun A, Gleize V, Chubb D, Letouzé E et al. TCF12 is mutated in anaplastic oligodendroglioma. Nat Commun 2015; 6: 7207.

Braunstein M, Anderson MK . HEB in the spotlight: Transcriptional regulation of T-cell specification, commitment, and developmental plasticity. Clin Dev Immunol 2012; 2012: 678705.

Tokuda K, Eguchi-Ishimae M, Yagi C, Kawabe M, Moritani K, Niiya T et al. CLTC-ALK fusion as a primary event in congenital blastic plasmacytoid dendritic cell neoplasm. Genes Chromosomes Cancer 2014; 53: 78–89.

DeMari J, Mroske C, Tang S, Nimeh J, Miller R, Lebel RR . CLTC as a clinically novel gene associated with multiple malformations and developmental delay. Am J Med Genet A 2016; 170A: 958–966.

Miyoshi N, Ishii H, Mimori K, Nishida N, Tokuoka M, Akita H et al. Abnormal expression of PFDN4 in colorectal cancer: a novel marker for prognosis. Ann Surg Oncol 2010; 17: 3030–3036.

Ma Z, Morris SW, Valentine V, Li M, Herbrick JA, Cui X et al. Fusion of two novel genes, RBM15 and MKL1, in the t(1;22)(p13;q13) of acute megakaryoblastic leukemia. Nat Genet 2001; 28: 220–221.

Ball JR, Ullman KS . Versatility at the nuclear pore complex: lessons learned from the nucleoporin Nup153. Chromosoma 2005; 114: 319–330.

Jafari N, Kim H, Park R, Li L, Jang M, Morris AJ et al. CRISPR-Cas9 mediated NOX4 knockout inhibits cell proliferation and invasion in HeLa cells. PLoS One 2017; 12: e0170327.

Meyer C, Burmeister T, Strehl S, Schneider B, Hubert D, Zach O et al. Spliced MLL fusions: a novel mechanism to generate functional chimeric MLL-MLLT1 transcripts in t(11;19)(q23;p13.3) leukemia. Leukemia 2007; 21: 588–590.

Zeisig DT, Bittner CB, Zeisig BB, García-Cuéllar MP, Hess JL, Slany RK . The eleven-nineteen-leukemia protein ENL connects nuclear MLL fusion partners with chromatin. Oncogene 2005; 24: 5525–5532.

Bitoun E, Oliver PL, Davies KE . The mixed-lineage leukemia fusion partner AF4 stimulates RNA polymerase II transcriptional elongation and mediates coordinated chromatin remodeling. Hum Mol Genet 2007; 16: 92–106.

Okada Y, Feng Q, Lin Y, Jiang Q, Li Y, Coffield VM et al. hDOT1L links histone methylation to leukemogenesis. Cell 2005; 121: 167–178.

Zhang Y, Reinberg D . Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev 2001; 15: 2343–2360.

Benedikt A, Baltruschat S, Scholz B, Bursen A, Arrey TN, Meyer B et al. The leukemogenic AF4-MLL fusion protein causes P-TEFb kinase activation and altered epigenetic signatures. Leukemia 2011; 25: 135–144.

Krivtsov AV, Feng Z, Lemieux ME, Faber J, Vempati S, Sinha AU et al. H3K79 methylation profiles define murine and human MLL-AF4 leukemias. Cancer Cell 2008; 14: 355–368.

Bursen A, Schwabe K, Rüster B, Henschler R, Ruthardt M, Dingermann T et al. AF4-MLL is capable of inducing ALL in mice without requirement of MLL-AF4. Blood 2010; 115: 3570–3579.

Wilkinson AC, Ballabio E, Geng H, North P, Tapia M, Kerry J et al. RUNX1 Is a key target in t(4;11) leukemias that contributes to gene activation through an AF4-MLL complex interaction. Cell Rep 2013; 3: 116–127.

Daigle SR, Olhava EJ, Therkelsen CA, Majer CR, Sneeringer CJ, Song J et al. Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell 2011; 20: 53–65.

Bursen A, Moritz S, Gaussmann A, Dingermann T, Marschalek R . Interaction of AF4 wildtype and AF4•MLL fusion protein with SIAH proteins: indication for t(4;11) pathobiology? Oncogene 2004; 23: 6237–6249.

Marschalek R . Systematic classification of mixed-lineage leukemia fusion partners predicts additional cancer pathways. Ann Lab Med 2016; 36: 85–100.