The Möbius function of a composition poset
Tóm tắt
Từ khóa
Tài liệu tham khảo
E. Babson and P. Hersh, “Discrete Morse functions from lexicographic orders,” Trans. Amer. Math. Soc. 357(2) (2005), 509–534 (electronic).
F. Bergeron, M., Bousquet-Mélou, and S. Dulucq, “Standard paths in the composition poset,” Ann. Sci. Math. Québec 19(2) (1995), 139–151.
A. Björner, “Shellable and Cohen-Macaulay partially ordered sets,” Trans. Amer. Math. Soc. 260(1) (1980), 159–183.
A. Björner, “The Möbius function of subword order,” in Invariant Theory and Tableaux (Minneapolis, MN, 1988), vol. 19 of IMA Vol. Math. Appl. Springer, New York, 1990, pp. 118–124.
A. Björner and C. Reutenauer, “Rationality of the Möbius function of subword order,” Theoret. Comput. Sci. 98(1) (1992), 53–63.
A. Björner and B.E. Sagan, “Rationality of the Möbius function of the composition poset,” Theoret. Comput. Sci., to appear.
A. Björner and R.P. Stanley, “An analogue of Young’s lattice for compositions,” arXiv:math. CO/0508043.
A. Björner and M. Wachs, “Bruhat order of Coxeter groups and shellability,” Adv. in Math. 43(1) (1982), 87–100.
M. Bóna, Combinatorics of permutations, Discrete Mathematics and its Applications. Chapman & Hall/CRC, Boca Raton, FL, 2004.
T. Chow and J. West, “Forbidden subsequences and Chebyshev polynomials,” Discrete Math. 204(1–3) (1999), 119–128.
R. Ehrenborg and M. Readdy, “The Tchebyshev transforms of the first and second kinds,” arXiv:math.CO/0412124.
F.D. Farmer, “Cellular homology for posets,” Math. Japon. 23(6) (1978/79), 607–613.
R. Forman, “A discrete Morse theory for cell complexes,” in Geometry, Topology, & Physics, Conf. Proc. Lecture Notes Geom. Topology, IV. Internat. Press, Cambridge, MA, 1995, pp. 112–125.
J.B. Kruskal, “The theory of well-quasi-ordering: A frequently discovered concept,” J. Combinatorial Theory Ser. A 13 (1972), 297–305.
T. Mansour and A. Vainshtein, “Restricted permutations, continued fractions, and Chebyshev polynomials,” Electron. J. Combin. 7 (2000), Research Paper 17, 9 pp. (electronic).
G.-C. Rota, “On the foundations of combinatorial theory. I. Theory of Möbius functions,” Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2 (1964), 340–368.
J. Snellman, “Saturated chains in composition posets,” arXiv:math.CO/0505262.
J. Snellman, “Standard paths in another composition poset,” Electron. J. Combin. 11(1) (2004), Research Paper 76, 8 pp. (electronic).
R.P. Stanley, Enumerative Combinatorics, Vol. 1, vol. 49 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1997.
G. Viennot, “Maximal chains of subwords and up-down sequences of permutations,” J. Combin. Theory Ser. A 34(1) (1983), 1–14.
T.M. Wang and X.R. Ma, “A generalization of the Cohen-Macaulay property of the Möbius function of a word poset,” Acta Math. Appl. Sinica 20(3) (1997), 431–437.
I. Warnke, “The Möbius-function of subword orders,” Rostock. Math. Kolloq. 46 (1993), 25–31.