The Möbius function and statistical mechanics
Tóm tắt
Từ khóa
Tài liệu tham khảo
Boca F.P., Cobeli C., Zaharescu A.: Distribution of lattice points visible from the origin. Commun. Math. Phys. 213(2), 433–470 (2000)
Bourgain, J.: Correlation bounds for Moebius and Walsh (in preparation)
Bourgain, J.: Möbius Schrödinger (to appear)
Cellarosi, F., Sinai, Ya.G.: Non-standard limit theorems in Number theory. Prokhorov Festschrift (to appear)
Davenport H.: On some infinite series involving arithmetical functions (ii). Q. J. Math. 8, 313–320 (1937)
de Bruijn N.G.: The asymptotic behaviour of a function occurring in the theory of primes. J. Indian Math. Soc. (N.S.) 15, 25–32 (1951)
de Bruijn N.G.: On the number of positive integers ≤ x and free of prime factors > y. Nederl. Acad. Wetensch. Proc. Ser. A 54, 50–60 (1951)
de Bruijn N.G.: On the number of positive integers ≤ x and free prime factors > y. II. Nederl. Akad. Wetensch. Proc. Ser. A 69 Indag. Math. 28, 239–247 (1966)
Dickman K.: On the frequency of numbers containing primes of a certain relative magnitude. Ark. Mat. Astr. Fys. 22 22A, 1–14 (1930)
Elkies N.D., McMullen C.T.: Gaps in $${{\sqrt n}}$$ mod 1 and ergodic theory. Duke Math. J. 123(1), 95–139 (2004)
Erdös, P.: Wiskundige Opgaven met de Oplossingen, 21. Problem and Solution Nr. 136 (1963)
Erdös P., Kac M.: The Gaussian law of errors in the theory of additive number theoretic functions. Am. J. Math. 62, 738–742 (1940)
Gnedenko, B.V., Kolmogorov, A.N.: Limit distributions for sums of independent random variables. Translated from the Russian, annotated, and revised by K.L. Chung. With appendices by J.L. Doob and P.L. Hsu. Revised edition. Addison-Wesley Publishing Co., Reading, London (1968)
Goncharov V.L.: From the realm of combinatorics (in Russian). Izv. Akad. Nauk SSSR, ser. matem., 8 1, 3–48 (1944)
Granville, A.: Smooth numbers: computational number theory and beyond. In: Algorithmic Number Theory: Lattices, Number Fields, Curves and Cryptography. Math. Sci. Res. Inst. Publ., vol. 44, pp. 267–323. Cambridge University Press, Cambridge (2008)
Granville A., Pomerance C.: On the least prime in certain arithmetic progressions. J. Lond. Math. Soc. (2) 41(2), 193–200 (1990)
Green, B.: On (not) computing the Möbius functions using bounded depth circuits (submitted)
Green, B., Tao, T.: The mobius function is strongly orthogonal to nilsequences. Ann. Math (to appear)
Heath-Brown D.R.: Zero-free regions for Dirichlet L-functions, and the least prime in an arithmetic progression. Proc. Lond. Math. Soc. (3) 64(2), 265–338 (1992)
Hensley D.: The convolution powers of the Dickman function. J. Lond. Math. Soc. (2) 33(3), 395–406 (1986)
Hildebrand A.: Integers free of large prime factors and the Riemann hypothesis. Mathematika 31(2), 258–271 (1985)
Iwaniec, H., Kowalski, E.: Analytic number theory. American Mathematical Society Colloquium Publications, vol. 53. American Mathematical Society, Providence (2004)
Kolmogorov, A.N.: Sulla forma generale di un processo stocastico omogeneo. Atti Acad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. 15(6):805–808; 866–869 (1932)
Linnik U.V.: On the least prime in an arithmetic progression. I. The basic theorem. Rec. Math. [Mat. Sbornik] N.S. 15(57), 139–178 (1944)
Linnik U.V.: On the least prime in an arithmetic progression. II. The Deuring-Heilbronn phenomenon. Rec. Math. [Mat. Sbornik] N.S. 15(57), 347–368 (1944)
Liu, J., Sarnak, P.: Integral points on quadrics in three variables whose coordinates have few prime factors (in preparation)
Mertens F.: Ein beitrag zur analytischen zahlentheorie. Ueber die vertheilung der primzahlen. J. Reine Angew. Math. 78, 46–62 (1874)
Pappalardi, F.: A survey on k-freeness. In: Number Theory. Ramanujan Math. Soc. Lect. Notes Ser., vol. 1, pp. 71–88. Ramanujan Math. Soc., Mysore (2005)
Pomerance C.: A note on the least prime in an arithmetic progression. J. Number Theory 12(2), 218–223 (1980)
Sarnak, P.: Möbius randomness and dynamics. Lecture Slides Summer 2010. http://www.math.princeton.edu/sarnak/Mobius%20lectures%20Summer%202010.pdf
Sarnak, P., Ubis, A.: The horocycle flow at prime values (in preparation)
Vershik A.M.: Asymptotic distribution of decompositions of natural numbers into prime divisors. Dokl. Akad. Nauk SSSR 289(2), 269–272 (1986)
Vershik, A.M.: Does a Lebesgue measure in an infinite-dimensional space exist? Tr. Mat. Inst. Steklova 259(Anal. i Osob. Ch. 2):256–281 (2007)
Vershik A.M., Schmidt A.A.: Limit measures that arise in the asymptotic theory of symmetric groups. I. Teor. Verojatnost. i Primenen. 22(1), 72–88 (1977)
Vershik A.M., Schmidt A.A.: Limit measures that arise in the asymptotic theory of symmetric groups. II. Teor. Verojatnost. i Primenen. 23(1), 42–54 (1978)
Xylouris, T.: Über die Linniksche Konstante. Diplomarbeit, Universität Bonn. arXiv:0906.2749v1 (2009)