The Möbius function and statistical mechanics

Francesco Cellarosi1, Ya. G. Sinaǐ1
1Mathematics Department, Princeton University, Princeton, NJ, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Boca F.P., Cobeli C., Zaharescu A.: Distribution of lattice points visible from the origin. Commun. Math. Phys. 213(2), 433–470 (2000)

Bourgain, J.: Correlation bounds for Moebius and Walsh (in preparation)

Bourgain, J.: Möbius Schrödinger (to appear)

Cellarosi, F., Sinai, Ya.G.: Non-standard limit theorems in Number theory. Prokhorov Festschrift (to appear)

Davenport H.: On some infinite series involving arithmetical functions (ii). Q. J. Math. 8, 313–320 (1937)

de Bruijn N.G.: The asymptotic behaviour of a function occurring in the theory of primes. J. Indian Math. Soc. (N.S.) 15, 25–32 (1951)

de Bruijn N.G.: On the number of positive integers ≤ x and free of prime factors > y. Nederl. Acad. Wetensch. Proc. Ser. A 54, 50–60 (1951)

de Bruijn N.G.: On the number of positive integers ≤ x and free prime factors > y. II. Nederl. Akad. Wetensch. Proc. Ser. A 69 Indag. Math. 28, 239–247 (1966)

Dickman K.: On the frequency of numbers containing primes of a certain relative magnitude. Ark. Mat. Astr. Fys. 22 22A, 1–14 (1930)

Elkies N.D., McMullen C.T.: Gaps in $${{\sqrt n}}$$ mod 1 and ergodic theory. Duke Math. J. 123(1), 95–139 (2004)

Erdös, P.: Wiskundige Opgaven met de Oplossingen, 21. Problem and Solution Nr. 136 (1963)

Erdös P., Kac M.: The Gaussian law of errors in the theory of additive number theoretic functions. Am. J. Math. 62, 738–742 (1940)

Fröberg C.-E.: On the prime zeta function. BIT 8(2), 187–202 (1968)

Gnedenko, B.V., Kolmogorov, A.N.: Limit distributions for sums of independent random variables. Translated from the Russian, annotated, and revised by K.L. Chung. With appendices by J.L. Doob and P.L. Hsu. Revised edition. Addison-Wesley Publishing Co., Reading, London (1968)

Goncharov V.L.: From the realm of combinatorics (in Russian). Izv. Akad. Nauk SSSR, ser. matem., 8 1, 3–48 (1944)

Granville, A.: Smooth numbers: computational number theory and beyond. In: Algorithmic Number Theory: Lattices, Number Fields, Curves and Cryptography. Math. Sci. Res. Inst. Publ., vol. 44, pp. 267–323. Cambridge University Press, Cambridge (2008)

Granville A., Pomerance C.: On the least prime in certain arithmetic progressions. J. Lond. Math. Soc. (2) 41(2), 193–200 (1990)

Green, B.: On (not) computing the Möbius functions using bounded depth circuits (submitted)

Green, B., Tao, T.: The mobius function is strongly orthogonal to nilsequences. Ann. Math (to appear)

Heath-Brown D.R.: Zero-free regions for Dirichlet L-functions, and the least prime in an arithmetic progression. Proc. Lond. Math. Soc. (3) 64(2), 265–338 (1992)

Hensley D.: The convolution powers of the Dickman function. J. Lond. Math. Soc. (2) 33(3), 395–406 (1986)

Hildebrand A.: Integers free of large prime factors and the Riemann hypothesis. Mathematika 31(2), 258–271 (1985)

Iwaniec, H., Kowalski, E.: Analytic number theory. American Mathematical Society Colloquium Publications, vol. 53. American Mathematical Society, Providence (2004)

Kolmogorov, A.N.: Sulla forma generale di un processo stocastico omogeneo. Atti Acad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. 15(6):805–808; 866–869 (1932)

Linnik U.V.: On the least prime in an arithmetic progression. I. The basic theorem. Rec. Math. [Mat. Sbornik] N.S. 15(57), 139–178 (1944)

Linnik U.V.: On the least prime in an arithmetic progression. II. The Deuring-Heilbronn phenomenon. Rec. Math. [Mat. Sbornik] N.S. 15(57), 347–368 (1944)

Liu, J., Sarnak, P.: Integral points on quadrics in three variables whose coordinates have few prime factors (in preparation)

Mertens F.: Ein beitrag zur analytischen zahlentheorie. Ueber die vertheilung der primzahlen. J. Reine Angew. Math. 78, 46–62 (1874)

Pappalardi, F.: A survey on k-freeness. In: Number Theory. Ramanujan Math. Soc. Lect. Notes Ser., vol. 1, pp. 71–88. Ramanujan Math. Soc., Mysore (2005)

Pomerance C.: A note on the least prime in an arithmetic progression. J. Number Theory 12(2), 218–223 (1980)

Sarnak, P.: Möbius randomness and dynamics. Lecture Slides Summer 2010. http://www.math.princeton.edu/sarnak/Mobius%20lectures%20Summer%202010.pdf

Sarnak, P., Ubis, A.: The horocycle flow at prime values (in preparation)

Vershik A.M.: Asymptotic distribution of decompositions of natural numbers into prime divisors. Dokl. Akad. Nauk SSSR 289(2), 269–272 (1986)

Vershik, A.M.: Does a Lebesgue measure in an infinite-dimensional space exist? Tr. Mat. Inst. Steklova 259(Anal. i Osob. Ch. 2):256–281 (2007)

Vershik A.M., Schmidt A.A.: Limit measures that arise in the asymptotic theory of symmetric groups. I. Teor. Verojatnost. i Primenen. 22(1), 72–88 (1977)

Vershik A.M., Schmidt A.A.: Limit measures that arise in the asymptotic theory of symmetric groups. II. Teor. Verojatnost. i Primenen. 23(1), 42–54 (1978)

Xylouris, T.: Über die Linniksche Konstante. Diplomarbeit, Universität Bonn. arXiv:0906.2749v1 (2009)