The Linear Stability of the Schwarzschild Solution to Gravitational Perturbations in the Generalised Wave Gauge

Annals of PDE - Tập 5 - Trang 1-92 - 2019
Thomas William Johnson1
1University of Cambridge, Cambridge, UK

Tóm tắt

We prove in this paper that the Schwarzschild family of black holes are linearly stable as a family of solutions to the system of equations that result from expressing the Einstein vacuum equations in a generalised wave gauge. In particular we improve on our recent work (Johnson in The linear stability of the Schwarzschild solution to gravitational perturbations in the generalised wave gauge, arXiv: 1803.04012, 2018) by modifying the generalised wave gauge employed therein so as to establish asymptotic flatness of the associated linearised system. The result thus complements the seminal work (Dafermos et al. in The linear stability of the Schwarzschild solution to gravitational perturbations, arXiv:1601.06467, 2016) of Dafermos–Holzegel–Rodnianski in a similar vein as to how the work (Lindblad and Rodnianski. in Ann Math 171:1401–1477, 2010) of Lindblad–Rodnianski complemented that of Christodoulou–Klainerman (Christodoulou and Klainerman in The global nonlinear stability of the Minkowski space. Princeton Mathematical Series, vol 41. Princeton University Press, Princeton, 1993) in establishing the nonlinear stability of the Minkowski space.

Tài liệu tham khảo

Andersson, L., Blue, P., Wang, J.: Morawetz estimate for linearised gravity in Schwarzschild, arXiv:1708.06943 (2017) Aretakis, S.: Horizon instability of extremal black holes. Adv. Theor. Math. Phys. 19, 507–530 (2016) Bardeen, J., Press, W.: Radiation fields in the Schwarzschild background. J. Math. Phys. 14, 7–19 (1973) Blue, P., Soffer, A.: The wave equation on the Schwarzschild metric. II. Local decay for the spin-2 Regge–Wheeler equation. J. Math. Phys. 46, 012502 (2005) Chandrasekhar, S.: On the equations governing the perturbations of the schwarzschild black hole. P. Roy. Soc. Lond. A Mat. 343, 289–298 (1975) Chandrasekhar, S.: The Mathematical Theory of Black Holes, Oxford, (1992) Chaverra, E., Ortiz, N., Sarbach, O.: Linear perturbations of self-gravitating spherically symmetric configurations, arXiv:1209.3731 (2013) Choquet-Bruhat, Y.: Théoréme d, Äôexistence pour certains systémes d, Äôéquations aux dérivées partielles non linéaires. Acta Math. 88, 141–225 (1952) Choquet-Bruhat, Y.: General relativity and the Einstein equations. Oxford University Press, Oxford (2008) Christodoulou, D., Klainerman, S.: The global nonlinear stability of the Minkowski space. Princeton Mathematical Series, vol. 41. Princeton University Press, Princeton (1993) Dafermos, M., Holzegel, G., Rodnianski, I.: The linear stability of the Schwarzschild solution to gravitational perturbations, arXiv:1601.06467 (2016) Dafermos, M., Holzegel, G., Rodnianski, I., A scattering theory construction of dynamical black hole spacetimes, arXiv:1306.5534, : to appear in J. Diff. Geom (2013) Dafermos, M., Rodnianski, I.: Decay for solutions of the wave equation on Kerr exterior spacetimes I-II: The cases \(|a|<<M \) or axisymmetry, arXiv:1010.5132 (2010) Dafermos, M., Rodnianski, I.: Lectures on black holes and linear waves, arXiv:0811.0354v1 (2008) Dafermos, M., Rodnianski, I.: A new physical-space approach to decay for the wave equation with applications to black hole spacetimes. In: Exner, P. (ed.) XVIth International Congress on Mathematical Physics, pp. 421–433. World Scientific, London (2009) Dafermos, M., Rodnianski, I.: The red-shift effect and radiation decay on black hole spacetimes. Comm. Pure Appl. Math. 62, 859–919 (2009) Dafermos, M., Rodnianski, I., Shlapentokh-Rothman, Y.: Decay for solutions of the wave equation on Kerr exterior spacetimes III: the full subextremal case \(|a|<M\). Ann. Math. 183, 787913 (2016) Dotti, G.: Nonmodal linear stability of the Schwarzschild black hole. Phys. Rev. Lett. 112, 191101 (2014) Fajman, D., Joudioux, J., Smulevici, J.: The stability of the Minkowski space for the Einstein-Vlasov system, arXiv:1707.06141 (2017) Finster, F., Smoller, J.: Decay of solutions of the Teukolsky equation for higher spin in the Schwarzschild geometry. Adv. Theor. Math. Phys. 13, 71–110 (2009) Friedman, J., Morris, M.: Schwarzschild perturbations die in time. J. Math. Phys. 41, 7529–7534 (2000) Friedrich, H.: On the hyperbolicity of Einstein’s and other gauge field equations. Comm. Math. Phys. 100, 525–543 (1985) Gerlach, U., Sengupta, U.: Gauge-invariant coupled gravitational, acoustical and electromagnetic on most general spherical space-times. Phys. Rev. D 22, 1300 (1980) Hintz, P.: Non-linear stability of the Kerr–Newman–de Sitter family of charged black holes, arXiv:1612.04489, to appear in Ann. of PDE (2016) Hintz, P., Vasy, A.: A global analysis proof of the stability of Minkowski space and the polyhomogeneity of the metric, arXiv:1711.00195 (2017) Hintz, P., Vasy, A.: The global non-linear stability of the Kerr–de Sitter family of black holes, arXiv:1606.04014, to appear in Acta Math (2016) Holzegel, G.: Ultimately Schwarzschildean spacetimes and the black hole stability problem, arXiv:1010.3216v1 (2010) Holzegel, G.: Conservation laws and flux bounds for gravitational perturbations of the Schwarzschild metric. Class. Quant. Grav. 30, 205004 (2016) Huneau, C.: Stability of Minkowski Space-time with a translation space-like Killing field. Annals PDE 13, 12 (2016) Hung, P.-K.: The linear stability of the Schwarzschild spacetime in the harmonic gauge: odd part, arXiv:1803.03881 (2018) Hung, P.-K., Keller, J., Wang, M.-T.: Linear stability of Schwarzschild spacetime: The Cauchy problem of metric coefficients, arXiv:1702.02843 (2017) Jezierski, J.: Energy and angular momentum of the weak gravitational waves on the Schwarzschild background—quasilocal gauge-invariant formulation. Gen. Rel. Grav. 31, 1855–1890 (1999) Johnson, T.: The linear stability of the Schwarzschild solution to gravitational perturbations in the generalised wave gauge, arXiv:1803.04012 (2018) Johnson, T.: The Regge–wheeler and Zerilli equations, Report for Imperial College London (2015), (Unpublished) Kay, B., Wald, R.: Linear stability of Schwarzschild under perturbations which are nonvanishinh on the bifurcation sphere. Class. Quant. Grav. 4, 893 (1987) Kerr, R.: Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 11, 237–238 (1963) Klainerman, S., Szeftel, J.: Global nonlinear stability of Schwarzschild spacetime under polarized perturbations, arXiv:1711.07597 (2017) LeFloch, P., Ma, Y.: The global nonlinear stability of Minkowski space for self-gravitating massive fields, vol. 3, Series in Applied and Computational Mathematics, (2017) Lindblad, H.: On the asymptotic behaviour of solutions to Einstein’s vacuum equations in wave coordinates. Comm. Math. Phys. 352, 135–184 (2017) Lindblad, H., Rodnianski, I.: The global stability of Minkowski space-time in the harmonic gauge. Ann. Math. 171, 1401–1477 (2010) Lindblad, H., Taylor, M.: Global stability of Minkowski space for the Einstein–Vlasov system in the harmonic gauge, arXiv:1707.06079 (2017) Martel, K., Poisson, E.: Gravitational perturbations of the Schwarzschild spacetime: a practical covariant and gauge-invariant formalism. Phys. Rev. D 71, 104003 (2005) Marzuola, J., Metcalfe, J., Tataru, D., Tohaneanu, M.: Strichartz estimates on Schwarzschild black hole backgrounds. Comm. Math. Phys. 293, 37–83 (2010) Moncrief, V.: Gravitational perturbations of spherically symmetric systems. I. the exterior problem, Ann. of Phys., 88, pp. 323–342 (1974) Moncrief, V.: Spacetime symmetries and linearization stability of the Einstein equations I. J. Math. Phys. 16, 493–498 (1975) Moschidis, G.: The \(r^{p}\)-weighted energy method of Dafermos and Rodnianski in general asymptotically flat spacetimes and applications. Ann. PDE 2, 1–194 (2016) Regge, T., Wheeler, J.A.: Stability of a Schwarzschild singularity. Phys. Rev. 108, 1063 (1957) Sarbach, O., Tiglio, M.: Gauge-invariant perturbations of Schwarzschild black holes in horizon-penetrating coordinates. Phys. Rev. D 64, 084016 (2001) Sarbach, O.C.A.: On the generalization of the regge, Äìwheeler equation for self, Äìgravitating matter fields. Phys. Rev. Lett. 84(2000), 3033 (2000) Sbierski, J.: Characterisation of the energy of gaussian beams on lorentzian manifolds—with applications to black hole spacetimes. Anal. PDE 8, 1379–1420 (2015) Schwarzschild, K.: Über das gravitationsfeld eines massenpunktes nach der einsteinschen theorie. Berl. Akad. Ber. 1, 189–196 (1916) Speck, J.: The global stability of the Minkowski spacetime solution to the einstein-nonlinear electromagnetic system in wave coordinates. Anal. PDE 7, 771–901 (2014) Teukolsky, S.: Perturbations of a rotating black hole. I. fundamental equations for gravitational, electromagnetic, and neutrino-field perturbations. Astrophys. J., 185, 635–648 (1973) Vishveshwara, C.: Stability of the Schwarzschild metric. Phys. Rev. D 1, 2870–2879 (1970) Wald, R .M.: General relativity. The University of Chicago Press, Chicago (1984) Zerilli, F.: Effective potential for even-parity Regge–Wheeler gravitational perturbation equations. Phys. Rev. Lett. 24, 737–738 (1970) Keir, J.: The weak null condition and global existence using the p-weighted energy method, arXiv:1808.09982 (2018)