The LEGO® brick road to open science and biotechnology

Trends in Biotechnology - Tập 40 - Trang 1073-1087 - 2022
Etienne Boulter1, Julien Colombelli2, Ricardo Henriques3,4, Chloé C. Féral1
1Université Côte d’Azur, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Institute of Research on Cancer and Aging in Nice (IRCAN), 28 Avenue de Valombrose, 06107 Nice CEDEX 2, France
2Institute for Research in Biomedicine (IRB) Barcelona, Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, E-08028 Barcelona, Spain
3Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, P-2780-156, Portugal
4Medical Research Council (MRC) Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK

Tài liệu tham khảo

Almada, 2019, Automating multimodal microscopy with NanoJ-Fluidics, Nat. Commun., 10, 1223, 10.1038/s41467-019-09231-9 Boulter, 2019, Cyclic uniaxial mechanical stretching of cells using a LEGO® parts-based mechanical stretcher system, J. Cell Sci., 133, jcs234666, 10.1242/jcs.234666 Boulter, 2021, Cyclic uniaxial cell stretching in tissue culture using a LEGO®-based mechanical stretcher and a polydimethylsiloxane stretchable vessel, STAR Protoc., 2, 10.1016/j.xpro.2021.100437 Asheim, 2014, A simple, small-scale Lego colorimeter with a light-emitting diode (LED) used as detector, J. Chem. Educ., 91, 1037, 10.1021/ed400838n Marintcheva, 2016, Modeling influenza antigenic shift and drift with LEGO bricks, J. Microbiol. Biol. Educ., 17, 300, 10.1128/jmbe.v17i2.1096 Hsieh, 2014, A conceptual atomic force microscope using LEGO for nanoscience education, Int. J. Autom. Smart Technol., 4, 113, 10.5875/ausmt.v4i2.358 Vos, 2021, Designing a high-resolution, LEGO-based microscope for an educational setting, Biophys, 2, 29 Gerber, 2017, Liquid-handling Lego robots and experiments for STEM education and research, PLoS Biol., 15, 10.1371/journal.pbio.2001413 Hossain, 2015, Interactive cloud experimentation for biology: an online education case study, 3681 Pereira, 2019, Low-cost (<€5), open-source, potential alternative to commercial spectrophotometers, PLoS Biol., 17, 10.1371/journal.pbio.3000321 Caputo, 2020, LEGO MINDSTORMS fraction collector: a low-cost tool for a preparative high-performance liquid chromatography system, Anal. Chem., 92, 1687, 10.1021/acs.analchem.9b04299 Loskill, 2015, μOrgano: a Lego®-like plug & play system for modular multi-organ-chips, PLoS One, 10, 10.1371/journal.pone.0139587 Ma, 2014, Supramolecular Lego assembly towards three-dimensional multi-responsive hydrogels, Adv. Mater., 26, 5665, 10.1002/adma.201402026 Dupont, 2015, IMp: the customizable LEGO® pinned insect manipulator, Zookeys, 481, 131, 10.3897/zookeys.481.8788 Lind, 2014, LEGO® bricks as building blocks for centimeter-scale biological environments: the case of plants, PLoS One, 9, 10.1371/journal.pone.0100867 Mäntylä, 2021, Brick Strex: a robust device built of LEGO bricks for mechanical manipulation of cells, Sci. Rep., 11, 18520, 10.1038/s41598-021-97900-5 Edelstein, 2014, Advanced methods of microscope control using μManager software, J. Biol. Methods, 1, 10.14440/jbm.2014.36 Laine, 2019, NanoJ: a high-performance open-source super-resolution microscopy toolbox, J. Phys. D. Appl. Phys., 52, 10.1088/1361-6463/ab0261 Gustafsson, 2016, Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations, Nat. Commun., 7, 12471, 10.1038/ncomms12471 Rust, 2006, Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM), Nat. Methods, 3, 793, 10.1038/nmeth929 Jungmann, 2014, Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT, Nat. Methods, 11, 313, 10.1038/nmeth.2835 Del Rosario, 2021, The field guide to 3D printing in microscopy, Adv. Biol. Whitesides, 2011, The frugal way, The Economist - The World in 2012, 154 Drack, 2018, The importance of open and frugal labware, Nat. Electron., 1, 484, 10.1038/s41928-018-0133-x Nurse, 2021, Biology must generate ideas as well as data, Nature, 597, 305, 10.1038/d41586-021-02480-z Bhamla, 2017, Hand-powered ultralow-cost paper centrifuge, Nat. Biomed. Eng., 1, 0009, 10.1038/s41551-016-0009 Cybulski, 2014, Foldscope: origami-based paper microscope, PLoS One, 9, 10.1371/journal.pone.0098781 Jones, 2014 Dupont, 2020, Flecs : a novel LEGO® tool for bound herbarium clamping, J. Nat. Sci. Collect., 7, 59 Morgan, 2016, Simple and versatile 3D printed microfluidics using fused filament fabrication, PLoS One, 11, 10.1371/journal.pone.0152023 Strauss, 2012, A robotics-based approach to modeling of choice reaching experiments on visual attention, Front. Psychol., 3, 105, 10.3389/fpsyg.2012.00105 Strauss, 2015, Choice reaching with a LEGO arm robot (CoRLEGO): the motor system guides visual attention to movement-relevant information, Neural Netw., 72, 3, 10.1016/j.neunet.2015.10.005 Adams, 2021, People systematically overlook subtractive changes, Nature, 592, 258, 10.1038/s41586-021-03380-y LeGoff, 2004, Use of LEGO© as a therapeutic medium for improving social competence, J. Autism Dev. Disord., 34, 557, 10.1007/s10803-004-2550-0 Legof, 2006, Long-term outcome of social skills intervention based on interactive LEGO© play, Autism, 10, 317, 10.1177/1362361306064403 Moser, 2016, From playroom to lab: tough stretchable electronics analyzed with a tabletop tensile tester made from toy-bricks, Adv. Sci., 3, 1500396, 10.1002/advs.201500396 Talib, 2019, Mechanical characterisation of lignocellulosic fibres using toy bricks tensile tester, J. Mech. Behav. Biomed. Mater., 97, 58, 10.1016/j.jmbbm.2019.05.010 Celli, 2015, Manipulating waves with LEGO® bricks: a versatile experimental platform for metamaterial architectures, Appl. Phys. Lett., 107, 10.1063/1.4929566 Chawner, 2019, LEGO® block structures as a sub-Kelvin thermal insulator, Sci. Rep., 9, 19642, 10.1038/s41598-019-55616-7 Sun, 2018, Photography coupled with self-propagating chemical cascades: differentiation and quantitation of G- and V-nerve agent mimics via chromaticity, ACS Cent. Sci., 4, 854, 10.1021/acscentsci.8b00193 Casini, 2014, A remote lab for experiments with a team of mobile robots, Sensors (Switzerland), 14, 16486, 10.3390/s140916486