The Kegel--Shemetkov Problem on Lattices of Generalized Subnormal Subgroups of Finite Groups

Algebra and Logic - Tập 41 - Trang 228-236 - 2002
A. F. Vasiliev, S. F. Kamornikov

Tóm tắt

We study into formations $$\mathfrak{F}$$ for which the set of all $$\mathfrak{F}$$ -subnormal ( $$\mathfrak{F}$$ -accessible) subgroups form a sublattice of the lattice of all subgroups in every finite group. A constructive description of all soluble hereditary formations of finite groups with given properties is furnished.

Tài liệu tham khảo

H. Wielandt, “Verallgemeinerung der invarianten Untergruppen,” Math. Z., 45, 209-244 (1939). R. Carter and T. O. Hawkes, “The F-normalizers of a finite soluble group,” J. Alg., 5, No. 2, 175-202 (1967). L. A. Shemetkov, Formations of Finite Groups [in Russian], Nauka, Moscow (1978). The Kourovka Notebook, 12th edn., Institute of Mathematics SO RAN, Novosibirsk (1992). O. H. Kegel, “Untergruppenverbände endlicher Gruppen, die Subnormalteilerverband echt enthalten,” Arch. Math., 30, No. 3, 225-228 (1978). A. F. Vasiliev, S. F. Kamornikov, and V. N. Semenchuk, “The lattices of subgroups of finite groups,” in Infinite Groups and Related Algebraic Structures, Institute of Mathematics, Kiev (1993), pp. 27-54. A. Ballester-Bolinches, K. Doerk, and M. D. Perez-Ramos, “On the lattice of F-subnormal subgroups,” J. Alg., 148, No. 2, 42-52 (1992). K. Doerk and T. Hawkes, Finite Soluble Groups, Walter de Gruyter, New York (1992). A. N. Skiba, “A class of local formations of finite groups,” Dokl. Akad. Nauk BSSR, 34, No. 11, 382-385 (1990). V. N. Semenchuk and A. F. Vasiliev, “Characterization of local formations F in terms of specified properties of minimal non-F-groups,” in Research in the Normal and Subgroup Structure of Finite Groups, Nauka i Tekhnika, Minsk (1984), pp. 175-181. T. O. Hawkes, “Two applications of twisted wreath products to finite soluble groups,” Trans. Am. Math. Soc., 214, No. 3, 325-335 (1975).