The Kandersteg rock avalanche (Switzerland): integrated analysis of a late Holocene catastrophic event
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aaron J, Hungr O (2016) Dynamic analysis of an extraordinarily mobile rock avalanche in the Northwest Territories, Canada. Can Geotech J 53:899–908. https://doi.org/10.1139/cgj-2015-0371
Aaron J, McDougall S (2019) Rock avalanche mobility: the role of path material. Eng Geol 257:105126. https://doi.org/10.1016/j.enggeo.2019.05.003
Aaron J, McDougall S, Nolde N (2019) Two methodologies to calibrate landslide runout models. Landslides 16:1–14. https://doi.org/10.1007/s10346-018-1116-8
Abele G (1974) Bergstürze in den Alpen: ihre Verbreitung, Morphologie und Folgeerscheinungen. Wissenschaftliche Alpenvereinshefte 25:1–230
Adrian H (1915) Geologische Untersuchungen der beiden Seiten des Kandertales. Eclogae Geol Helv 13:238–351
Agliardi F, Crosta GB, Zanchi A (2001) Structural constraints on deep-seated slope deformation kinematics. Eng Geol 59(1–2):83–102. https://doi.org/10.1016/S0013-7952(00)00066-1
Alfimov V, Ivy-Ochs S (2009) How well do we understand production of 36Cl in limestone and dolomite? Quat Geochronol 4:462–474. https://doi.org/10.1016/j.quageo.2009.08.005
Bachmann I (1870) Die Kander im Berner Oberland: ein ehemaliges Gletscher- und Flussgebiet; Beitrag zur Kenntnis der schweizerischen Quartärbildungen in gemeinfasslicher Darstellung. Dalp, Bern
Badino F, Ravazzi C, Vallè F et al (2018) 8800 years of high-altitude vegetation and climate history at the Rutor Glacier forefield, Italian Alps. Evidence of middle Holocene timberline rise and glacier contraction. Quat Sci Rev 185:41–68. https://doi.org/10.1016/j.quascirev.2018.01.022
Beck P (1929) Vorläufige Mitteilung über die Bergstürze und den Murgang im Kandertal (Berner Oberland). Eclogae Geol Helv 22:155–159
Beck P (1952) Neue Erkenntnisse über die Bergstürze im Kandertal. Eclogae Geol Helv 45:277–280
Bini A, Buoncristiani J, Couterrand S et al (2009) Die Schweiz während des letzteiszeitlichen Maximums (LGM), karte 1:500 000. Bundesamt für Landestopografie swisstopo, Wabern
Boeckli L, Brenning A, Gruber S, Noetzli J (2012) A statistical approach to modelling permafrost distribution in the European Alps or similar mountain ranges. Cryosphere 6:125–140. https://doi.org/10.5194/tc-6-125-2012
Brideau MA, Yan M, Stead D (2009) The role of tectonic damage and brittle rock fracture in the development of large rock slope failures. Geomorphology 103:30–49. https://doi.org/10.1016/j.geomorph.2008.04.010
Brideau MA, Pedrazzini A, Stead D, Froese C, Jaboyedoff M, van Zeyl D (2011) Three-dimensional slope stability analysis of South Peak, Crowsnest Pass, Alberta, Canada. Landslides 8:139–158. https://doi.org/10.1007/s10346-010-0242-8
Brückner E (1897) Die feste Erdrinde und ihre Formen: Ein Abriss der allgemeinen Geologie und der Morphologie der Erdoberfläche. Tempsky, Prag
Charrière M, Humair F, Froese C, Jaboyedoff M, Pedrazzini A, Longchamp C (2016) From the source area to the deposit: collapse, fragmentation, and propagation of the Frank Slide. Geol Soc Am Bull 128:332–351. https://doi.org/10.1130/B31243.1
Clague JJ, Stead D (2012) Landslides: types, mechanisms and modeling. Cambridge University Press, Cambridge
Crosta GB, Frattini P, Fusi N (2007) Fragmentation in the Val Pola rock avalanche, Italian Alps. J Geophys Res Earth Surf 112:1–23. https://doi.org/10.1029/2005JF000455
Deplazes G, Anselmetti FS (2007) Auf den Spuren des Flimser Bergsturzes im Lag la Cauma und Lag Grond. Geosci Actuel Sci Nat 3:46–50
Dufresne A, Davies TRH (2009) Longitudinal ridges in mass movement deposits. Geomorphology 105:171–181. https://doi.org/10.1016/j.geomorph.2008.09.009
Dufresne A, Prager C, Bösmeier A (2016) Insights into rock avalanche emplacement processes from detailed morpho-lithological studies of the Tschirgant deposit (Tyrol, Austria). Earth Surf Process Landf 41:587–602. https://doi.org/10.1002/esp.3847
Dunning SA, Armitage PJ (2011) The grain-size distribution of rock-avalanche deposits: implications for natural dam stability. In: Evans SG et al (eds) Natural and artificial rockslide dams. Springer, Berlin, Heidelberg, pp 479–498
Dunning SA, Petley DN, Rosser NJ, Strom AL (2005) The morphology and sedimentology of valley confined rock-avalanche deposits and their effect on potential dam hazard. In: Hungr O et al (eds) Landslide risk management. CRC press, Boca Raton, pp 691–701
Eisbacher GH, Clague JJ (1984) Destructive mass movements in high mountains: hazard and management. Geol Surv Can:84–16
Evans SG, Mugnozza GS, Strom AL, Hermanns RL, Ischuk A, Vinnichenko S (eds) (2006) Landslides from massive rock slope failure. Springer, Dordrecht
Fäh D, Giardini D, Kästli P et al (2011) ECOS-09 Earthquake Catalogue of Switzerland Release 2011 Report and Database. Public catalogue, 17.4.2011. Swiss Seismological Service ETH, Zurich
Fellenberg E, Kissling E, Schardt H (1901) Lötschberg- und Wildstrubeltunnel: Geologische Expertise. Mitt Naturforsch Ges Bern:11–131
Fort M, Cossart E, Deline P et al (2009) Geomorphic impacts of large and rapid mass movements: a review. Groupe Franç Géomorphol 15:47–64
Fritsche S, Fäh D, Schwarz-Zanetti G (2012) Historical intensity VIII earthquakes along the Rhone valley (Valais, Switzerland): primary and secondary effects. Swiss J Geosci 105:1–18. https://doi.org/10.1007/s00015-012-0095-3
Furrer H, Huber K, Adrian H et al (1993) Geologischer Atlas der Schweiz, Blatt 87, Adelboden. Bundesamt für Wasser und Geologie BWG, Ittigen
Gerber E, Scheidegger AE (1969) Stress-induced weathering of rock masses. Eclogae Geol Helv 62:401–415. https://doi.org/10.5169/seals-163705
Gischig V, Preisig G, Eberhardt E (2016) Numerical investigation of seismically induced rock mass fatigue as mechanism contributing to the progressive failure of deep-seated landslides. Rock Mech Rock Eng 49:2457–2478. https://doi.org/10.1007/s00603-015-0821-z
Grämiger LM, Moore JR, Vockenhuber C, Aaron J, Hajdas I, Ivy-Ochs S (2016) Two early Holocene rock avalanches in the Bernese Alps (Rinderhorn, Switzerland). Geomorphology 268:207–221. https://doi.org/10.1016/j.geomorph.2016.06.008
Grämiger LM, Moore JR, Gischig VS, Ivy-Ochs S, Loew S (2017) Beyond debuttressing: mechanics of paraglacial rock slope damage during repeat glacial cycles. J Geophys Res Earth Surf 122:1004–1036. https://doi.org/10.1002/2016JF003967
Gruber S, Haeberli W (2007) Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change. J Geophys Res Earth Surf:112. https://doi.org/10.1029/2006JF000547
Guthrie RH, Friele P, Allstadt K et al (2012) The 6 August 2010 Mount Meager rock slide-debris flow, Coast Mountains, British Columbia: characteristics, dynamics, and implications for hazard and risk assessment. Nat Hazards Earth Syst Sci 12:1277–1294. https://doi.org/10.5194/nhess-12-1277-2012
Heim A (1932) Bergsturz und Menschenleben. Fretz & Wasmuth, Zürich
Hermanns RL, Longva O (2012) Rapid rock-slope failures. In: Clague JJ, Stead D (eds) Landslides: types, mechanisms and modeling. Cambridge University Press, Cambridge, pp 59–70
Hermanns RL, Schleier M, Böhme M, Blikra LH, Gosse JC, Ivy-Ochs S, Hilger P (2017) Rock avalanche activity in W and S Norway peaks after the retreat of the Scandinavian Ice Sheet. In: Mikoš M et al (eds) Advancing culture of living with landslides. Springer, Cham, pp 331–338
Hewitt K, Clague JJ, Orwin JF (2008) Legacies of catastrophic rock slope failures in mountain landscapes. Earth Sci Rev 87:1–38. https://doi.org/10.1016/j.earscirev.2007.10.002
Hilger P, Hermanns RL, Gosse JC, Jacobs B, Etzelmüller B, Krautblatter MJTH (2018) Multiple rock-slope failures from Mannen in Romsdal Valley, western Norway, revealed from Quaternary geological mapping and 10Be exposure dating. Holocene 28:1841–1854. https://doi.org/10.1177/0959683618798165
Hilger P, Gosse JC, Hermanns RL (2019) How significant is inheritance when dating rockslide boulders with terrestrial cosmogenic nuclide dating?—a case study of an historic event. Landslides 16:729–738. https://doi.org/10.1007/s10346-018-01132-0
Holzhauser H (1995) Gletscherschwankungen innerhalb der letzten 3200 Jahre am Beispiel des grossen Aletsch- und des Gornergletschers. Neue Ergebnisse. In: Gletscher im ständigen Wandel. Publikationen der Schweizerischen Akademie der Naturwissenschaften 6:101–123
Huggel C, Salzmann N, Allen S et al (2010) Recent and future warm extreme events and high-mountain slope stability. Phil Trans R Soc Lond A 368(1919):2435–2459. https://doi.org/10.1098/rsta.2010.0078
Hungr O (1995) A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Can Geotech J 32(2):610–623. https://doi.org/10.1139/t95-063
Hungr O, Evans SG (1996) Rock avalanche runout prediction using a dynamic model. In: Senneset K (ed) Proceedings of the 7th International Symposium on Landslides. Balkema, Rotterdam, pp 233–238
Hungr O, Evans SG (2004) Entrainment of debris in rock avalanches: an analysis of a long runout mechanism. Geol Soc Am Bull 116:1240–1252. https://doi.org/10.1130/B25362.1
Hungr O, Mcougall S (2009) Two numerical models for landslide dynamic analysis. Comput Geosci 35(5):978–992. https://doi.org/10.1016/j.cageo.2007.12.003
International Society for Rock Mechanics Commission on Standardisation of Laboratory and Field Tests (ISRM) (1978) Suggested methods for the quantitative description of discontinuities in rock masses. Int J Rock Mech Min Sci Geomech Abstr 15:319–368
Ivy-Ochs S (2015) Glacier variations in the European Alps at the end of the last glaciation. Cuad Investig Geog 41:295–315
Ivy-Ochs S, Heuberger H, Kubik PW, Kerschner H, Bonani G, Frank M, Schlüchter C (1998) The age of the Köfels event-relative, 14C and cosmogenic isotope dating of an early Holocene landslide in the Central Alps (Tyrol, Austria). Z. Gletsch.kd. Glazialgeol 34:57–68
Ivy-Ochs S, Synal HA, Roth C, Schaller M (2004) Initial results from isotope dilution for Cl and 36Cl measurements at the PSI/ETH Zurich AMS facility. Nucl Instrum Meth B 223:623–627. https://doi.org/10.1016/j.nimb.2004.04.115
Ivy-Ochs S, Poschinger A, Synal HA, Maisch M (2009) Surface exposure dating of the Flims landslide, Graubünden, Switzerland. Geomorphology 103:104–112. https://doi.org/10.1016/j.geomorph.2007.10.024
Ivy-Ochs S, Martin S, Campedel P et al (2017) Geomorphology and age of the Marocche di Dro rock avalanches (Trentino, Italy). Quat Sci Rev 169:188–205. https://doi.org/10.1016/j.quascirev.2017.05.014
Jaboyedoff M, Couture R, Locat P (2009) Structural analysis of Turtle Mountain (Alberta) using digital elevation model: toward a progressive failure. Geomorphology 103:5–16. https://doi.org/10.1016/j.geomorph.2008.04.012
Kellerhals P, Isler A (1998) Lötschberg-Basistunnel: Geologische Voruntersuchungen und Prognose. Geologische Berichte Nr. 22, Landeshydrologie und Geologie, Bern
Kenner R (2017) Permafrost and ground ice map of Switzerland [data set]. Zenodo. https://doi.org/10.5281/zenodo.803850
Knapp S, Gilli A, Anselmetti FS, Krautblatter M, Hajdas I (2018) Multistage rock-slope failures revealed in lake sediments in a seismically active Alpine region (Lake Oeschinen, Switzerland). J Geophys Res Earth Surf 123:658–677. https://doi.org/10.1029/2017JF004455
Köpfli P, Grämiger LM, Moore JR, Vockenhuber C, Ivy-Ochs S (2018) The Oeschinensee rock avalanche, Bernese Alps, Switzerland: a co-seismic failure 2300 years ago? Swiss J Geosci 111:205–219. https://doi.org/10.1007/s00015-017-0293-0
Körner H (1976) Reichweite und Geschwindigkeit von Bergsturzen und Fliessschneelawinen. Rock Mech 8:225–256
Korup O, Densmore AL, Schlunegger F (2010) The role of landslides in mountain range evolution. Geomorphology 120(1):77–90. https://doi.org/10.1016/j.geomorph.2009.09.017
Krautblatter M, Huggel C, Deline P, Hasler A (2012) Research perspectives for unstable high-alpine bedrock permafrost: measurement, modelling and process understanding. Permafrost Periglac 23:80–88. https://doi.org/10.1002/ppp.740
Krautblatter M, Funk D, Günzel FK (2013) Why permafrost rocks become unstable: a rock–ice-mechanical model in time and space. Earth Surf Process Landf 38(8):876–887. https://doi.org/10.1002/esp.3374
Krebs J (1925) Stratigraphie der Blüemlisalp-Gruppe: Fisistock-Doldenhorn-Blümlisalp-Gspaltenhorn im Berner Oberland. Stämpfli, Bern
Kremer K, Wirth SB, Reusch A, Fäh D, Bellwald B, Anselmetti FS, Girardclos S, Strasser M (2017) Lake-sediment based paleoseismology: limitations and perspectives from the Swiss Alps. Quat Sci Rev 168:1–18. https://doi.org/10.1016/j.quascirev.2017.04.026
Lambiel C, Reynard E (2001) Regional modelling of present, past and future potential distribution of discontinuous permafrost based on a rock glacier inventory in the Bagnes-Hérémence area (Western Swiss Alps). Nor Geogr Tidsskr 55(4):219–223. https://doi.org/10.1080/00291950152746559
Leith K, Moore JR, Amann F, Loew S (2014) Subglacial extensional fracture development and implications for Alpine valley evolution. J Geophys Res Earth Surf 119(1):62–81. https://doi.org/10.1002/2012JF002691
LeRoy M, Deline P, Carcaillet J, Schimmelpfennig I, Ermini M, ASTER Team (2017) 10Be exposure dating of the timing of Neoglacial glacier advances in the Ecrins-Pelvoux massif, southern French Alps. Quat Sci Rev 178:118–138. https://doi.org/10.1016/j.quascirev.2017.10.010
Marrero SM, Phillips FM, Caffee MW, Gosse JC (2016) CRONUS-Earth cosmogenic 36Cl calibration. Quat Geochronol 31:199–219. https://doi.org/10.1016/j.quageo.2015.10.002
Martin S, Campedel P, Ivy-Ochs S et al (2014) Lavini di Marco (Trentino, Italy): 36Cl exposure dating of a polyphase rock avalanche. Quat Geochronol 19:106–116. https://doi.org/10.1016/j.quageo.2013.08.003
Mathews WH, McTaggart KC (1969) Hope rockslide, British Columbia, Canada. In: Voight B (ed) Rockslides and avalanches natural phenomena. Elsevier, Amsterdam, pp 253–257
McColl S (2015) Landslide causes and triggers. In: Shroder J, Davies T (eds) Landslide hazards. Risks and Disasters. Elsevier, Amsterdam, pp 17–42
McColl ST, Davies TRH, McSaveney MJ (2010) Glacier retreat and rock-slope stability: debunking debuttressing. In: William AL et al (eds) Geologically active. Taylor and Francis, London, pp 467–474
McDougall S (2006) A continuum dynamic model for the analysis of extremely rapid landslide motion across complex 3D terrain. PhD Thesis, University of British Columbia
McDougall S, Hungr O (2004) A model for the analysis of rapid landslide motion across three-dimensional terrain. Can Geotech J 41(6):1084–1097. https://doi.org/10.1139/t04-052
McSaveney MJ, Davies TR (2006) Rapid rock mass flow with dynamic fragmentation: inferences from morphology and internal structure of rockslides and rock avalanches. In: Evans SG et al (eds) Landslides from massive rock slope failure. Springer, Dordrecht, pp 285–304
Moore JR, Gischig V, Katterbach M, Loew S (2011) Air circulation in deep fractures and the temperature field of an alpine rock slope. Earth Surf Process Landf 36:1985–1996. https://doi.org/10.1002/esp.2217
Moore JR, Gischig V, Amann F, Hunziker M, Burjanek J (2012) Earthquake-triggered rock slope failures: damage and site effects. In: Proceedings 11th International & 2nd North American Symposium on Landslides. CRC Press, Banff, pp 869–875
Nicolussi K, Kaufmann M, Patzelt G, van der Plicht J, Thurner A (2005) Holocene tree-line variability in the Kauner Valley, Central Eastern Alps, indicated by dendrochronological analysis of living trees and subfossil logs. Veget Hist Archaeobot 14:221–234. https://doi.org/10.1007/s00334-005-0013-y
Nicolussi K, Spötl C, Thurner A, Reimer PJ (2015) Precise radiocarbon dating of the giant Köfels landslide (Eastern Alps, Austria). Geomorphology 243:87–91. https://doi.org/10.1016/j.geomorph.2015.05.001
Nussbaum F (1934) Ueber die Formen von Bergsturzmassen, mit besonderer Berücksichtigung des Bergsturzes im Kandertal. Der Schweizer Geograph 11:12–13
Orwin JF, Clague JC, Gerath RF (2004) The Cheam rock avalanche, Fraser Valley, British Columbia, Canada. Landslides 4:289–298. https://doi.org/10.1007/s10346-004-0036-y
Ostermann M, Sanders D, Ivy-Ochs S, Alfimov V, Rockenschaub M, Römer A (2012) Early Holocene (8.6 ka) rock avalanche deposits, Obernberg valley (Eastern Alps): landform interpretation and kinematics of rapid mass movement. Geomorphology 171-172:83–93. https://doi.org/10.1016/j.geomorph 2012.05.006
Paguican EM, de Vries BV, Lagmay AM (2014) Hummocks: how they form and how they evolve in rockslide-debris avalanches. Landslides 11:67–80. https://doi.org/10.1007/s10346-012-0368-y
Pánek T, Hradecký J, Šilhán K, Smolková V, Altová V (2009) Time constraints for the evolution of a large slope collapse in karstified mountainous terrain of the southwestern Crimean Mountains, Ukraine. Geomorphology 108:171–181. https://doi.org/10.1016/j.geomorph.2009.01.003
Parise M (2008) Rock failures in karst. In: Cheng Z et al (eds) Landslides and engineered slopes. CRC Press, Boca Raton, pp 275–280
Pesendorfer M, Loew S (2004) Hydrogeologic exploration during excavation of the Lötschberg base tunnel (AlpTransit Switzerland). In: Azzam R (ed) Engineering geology for infrastructure planning in Europe. Springer, Berlin, Heidelberg, pp 347–358
Pfiffner A (2010) The Helvetic nappe system and landscape evolution of the Kander valley. Schweiz Bull Angew Geol 15:53–61
Phillips M, Wolter A, Lüthi R, Amann F, Kenner R, Bühler Y (2017) Rock slope failure in a recently deglaciated permafrost rock wall at Piz Kesch (Eastern Swiss Alps), February 2014. Earth Surf Process Landf 42:426–438. https://doi.org/10.1002/esp.3992
Prager C, Zangerl C, Patzelt G, Brandner R (2008) Age distribution of fossil landslides in the Tyrol (Austria) and its surrounding areas. Nat Hazards Earth Syst Sci 8:377–407
Ravanel L, Deline P (2010) Climate influence on rockfalls in high-alpine steep rock walls: the north side of the Aiguilles de Chamonix (Mont Blanc massif) since the end of the Little Ice Age. The Holocene 21:357–365. https://doi.org/10.1177/0959683610374887
Santo A, Del Prete S, Di Crescenzo G, Rotella M (2007) Karst processes and slope instability: some investigations in the carbonate Apennine of Campania (southern Italy). Geol Soc Lond Spec Pub 279:59–72. https://doi.org/10.1144/SP279.6
Schleier M, Hermanns RL, Gosse JC, Oppikofer T, Rohn J, Tønnesen JF (2017) Subaqueous rock-avalanche deposits exposed by post-glacial isostatic rebound, Innfjorddalen, Western Norway. Geomorphology 289:117–133. https://doi.org/10.1016/j.geomorph.2016.08.024
Schulz WH, McKenna JP, Kibler JD, Biavati G (2009) Relations between hydrology and velocity of a continuously moving landslide—evidence of pore-pressure feedback regulating landslide motion? Landslides 6:181–190. https://doi.org/10.1007/s10346-009-0157-4
Shea T, de Vries BVW (2008) Structural analysis and analogue modeling of the kinematics and dynamics of rockslide avalanches. Geosphere 4:657–686. https://doi.org/10.1130/GES00131.1
Shugar DH, Clague JJ (2011) The sedimentology and geomorphology of rock avalanche deposits on glaciers. Sedimentology 58:1762–1783. https://doi.org/10.1111/j.1365-3091.2011.01238.x
Sosio R, Crosta GB, Hungr O (2008) Complete dynamic modeling calibration for the Thurwieser rock avalanche (Italian Central Alps). Eng Geol 100:11–26. https://doi.org/10.1016/j.enggeo.2008.02.012
Spreafico MC, Wolter A, Picotti V, Borgatti L, Mangeney A, Ghirotti M (2018) Forensic investigations of the Cima Salti Landslide, northern Italy, using runout simulations. Geomorphology 318:172–186. https://doi.org/10.1016/j.geomorph.2018.04.013
Stead D, Wolter A (2015) A critical review of rock slope failure mechanisms: the importance of structural geology. J Struct Geol 74:1–23. https://doi.org/10.1016/j.jsg.2015.02.002
Stone JOH, Allan GL, Fifield LK, Cresswell RG (1996) Cosmogenic chlorine-36 from calcium spallation. Geochim Cosmochim Acta 60:679–692. https://doi.org/10.1016/0016-7037(95)00429-7
Strom A (2006) Morphology and internal structure of rockslides and rock avalanches: grounds and constraints for their modelling. In: Evans SG et al (eds) Landslides from massive rock slope failure. Springer, Dordrecht, pp 305–326
Tinner W, Kaltenrieder P, Soom M, Zwahlen P, Schmidhalter M, Boschetti A, Schlüchter C (2005) Der nacheiszeitliche Bergsturz im Kandertal (Schweiz): Alter und Auswirkungen auf die damalige Umwelt. Swiss J Geosci 98:83–95. https://doi.org/10.1007/s00015-005-1147-8
Turnau V (1906) Beiträge zur Geologie der Berner Alpen. Wyss, Bern
Vockenhuber C, Miltenberger KU, Synal HA (2019) 36Cl measurements with a gas-filled magnet at 6 MV. Nucl Instrum Meth B 455:190–194. https://doi.org/10.1016/j.nimb.2018.12.046
Walter F, Amann F, Kos A, Kenner R, Phillips M, de Preux A, Huss M, Tognacca C, Clinton J, Diehl T, Bonanomi Y (2020) Direct observations of a three million cubic meter rock-slope collapse with almost immediate initiation of ensuing debris flows. Geomorphology 351. https://doi.org/10.1016/j.geomorph.2019.106933
Wang YF, Cheng QG, Lin QW, Li K, Yang HF (2018) Insights into the kinematics and dynamics of the Luanshibao rock avalanche (Tibetan plateau, China) based on its complex surface landforms. Geomorphology 317:170–183. https://doi.org/10.1016/j.geomorph.2018.05.025
Weidinger JT, Korup O, Munack H, Altenberger U, Dunning SA, Tippelt G, Lottermoser W (2014) Giant rockslides from the inside. Earth Planet Sci Lett 389:62–73. https://doi.org/10.1016/j.epsl.2013.12.017
Wildberger A, Preiswerk C (1997) Karst und Höhlen der Schweiz/Karst et grottes de Suisse/Carso e grotte della Svizzera/Karst and Caves of Switzerland. Speleo Projects, Basel
Wolter A, Gischig V, Stead D, Clague JJ (2016) Investigation of geomorphic and seismic effects on the 1959 Madison Canyon, Montana, landslide using an integrated field, engineering geomorphology mapping, and numerical modelling approach. Rock Mech Rock Eng 49:2479–2501. https://doi.org/10.1007/s00603-015-0889-5
Yin Y, Sun P, Zhang M, Li B (2011) Mechanism on apparent dip sliding of oblique inclined bedding rockslide at Jiweishan, Chongqing, China. Landslides 8:49–65. https://doi.org/10.1007/s10346-010-0237-5
Zerathe S, Lebourg T, Braucher R, Bourlès DL (2014) Mid-Holocene cluster of large-scale landslides revealed in the Southwestern Alps by 36Cl dating. Insight on an Alpine-scale landslide activity. Quat Sci Rev 90:106–127. https://doi.org/10.1016/j.quascirev.2014.02.015
Ziegler HJ, Isler A (2013) Lötschberg Basistunnel: Zusammenfassender geologischer Schlussbericht. Berichte der Landesgeologie 4. Swisstopo, Wabern
Zwahlen P (1986) Die Kandertal-Störung: eine transversale Diskontinuität im Bau der Helvetischen Decken. Dissertation, Universität Bern