The Ising Model of the Hoke Effect in Hybrid Perovskites
Tóm tắt
The Ising model of segregation of halide ions in hybrid perovskites upon illumination allows obtaining the relationship between the long-range order parameter of segregation and temperature taking into account the interaction of iodide ions fluctuations with an electron-hole pair generated by light.
Tài liệu tham khảo
Kojima, A., Teshima, K., Shirai, Y., and Miyasaka, T., J. Am. Chem. Soc., 2009, vol. 31, p. 6050.
Polman, A., Knight, M., Garnett, E.C., et al., Photovoltaic materials: present efficiencies and future challenges, Science (Washington, DC, U. S.), 2016, vol. 352, p. 4424.
Green, M.A., Emery, K., and Hishikawa, Y., et al., Solar cell efficiency tables (version 48), Prog. Photovolt., 2016, vol. 24, pp. 905–913.
Yin, W.-J., Shi, T., and Yan, Y., Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber, Appl. Phys. Lett., 2014, vol. 104, p. 063903.
Steirer, K.X., Schulz, P., Teeter, G., et al., Defect tolerance in methylammonium lead triiodide perovskite, ACS Energy Lett., 2016, vol. 1, pp. 360–366.
Stranks, S.D., Eperon, G.E., Grancini, G., et al., Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber, Science (Washington, DC, U. S.), 2013, vol. 342, pp. 341–344.
Saliba, M., Matsui, T., Seo, J.-Y., et al., Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency, Energy Environ. Sci., 2016, vol. 9, pp. 1989–1997.
Ahn, N., Son, D.-Y., Jang, I.-H., et al., Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of Lead(II) iodide, J. Am. Chem. Soc., 2015, vol. 137, pp. 8696–8699.
Zhou, Y., Yang, M., Pang, S., et al., Exceptional morphology-preserving evolution of formamidinium lead triiodide perovskite thin films via organic-cation displacement, J. Am. Chem. Soc., 2016, vol. 138, pp. 5535–5538.
Yi, C., Luo, J., Melon, S., et al., Entropic stabilization of mixed A-cation ABX-3 metal halide perovskites for high performance perovskite solar cells, Energy Environ. Sci., 2016, vol. 9, pp. 656–662.
Noh, J.H., Im, S.H., Heo, J.H., et al., Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells, Nano Lett., 2013, vol. 13, pp. 1764–1769.
Hoke, E.T., Slotcavage, D.J., Dohner, E.R., et al., Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics, Chem. Sci., 2015, vol. 6, pp. 613–617.
Bischak, C.G., Hetherington, C.L., Wu, H., et al., Origin of reversible photo-induced phase separation in hybrid perovskites, Nano Lett., 2017, vol. 17, no. 2, pp. 1028–1033.
Slotcavage, D.J., Karunadasa, H.I., and McGehee, M.D., Light-induce phase segregation in halide perovskite absorbers, ACS Energy Lett., 2016, vol. 1, pp. 1199–1205.
Wright, A.D., Verdi, C., Milot, R.L., et al., Electron-phonon coupling in hybrid lead halide perovskites, Nat. Commun., 2016. doi 10.1038/ncomms11755
Neukirch, A.J., Nie, W., Blancon, J.-C., et al., Polaron stabilization by cooperative lattice distortion and cation rotations in hybrid perovskite materials, Nano Lett., 2016, vol. 16, pp. 3809–3816.
Ziman, J.M., Models of Disorder, Cambridg: Cambridge Univ. Press, 1979.
Gets, D.S., Tiguntseva, E.Yu, Zakhidov, A.A., et al., Photoinduced ions migration in optically resonant perovskite nanoparticles, JETP Lett., 2018, in press.
Oksengendler, B.L., Maksimov, S.E., and Turaev, N.Yu., Synergetics of catastrophic failures of semiconductor devices under high-energy ion irradiation, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech., 2016, vol. 10, no. 2, pp. 393–397.
Schuster, H.G., Deterministic Chaos, Weinheim: Physik, 1984.