The Inverse Conjecture for the Gowers Norm over Finite Fields in Low Characteristic

Annals of Combinatorics - Tập 16 Số 1 - Trang 121-188 - 2012
Terence Tao1, Tamar Ziegler2
1Department of Mathematics, UCLA, Los Angeles, CA, 90095-1596, USA
2Department of Mathematics, Technion Israel Institute of Technology, Haifa, Israel

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alon, N., Kaufman, T., Krivelevich, M., Litsyn, S., Ron, D.: Testing flow-degree polynomials over GF(2). In: Arora, S. et al. (eds.) Approximation, Randomization, and Combinatorial Optimization, pp. 188–199. Spinger, Berlin (2003). Also: Testing Reed-Muller codes. IEEE Trans. Inform. Theory 51(11), 4032–4039 (2005)

Austin T.: On the norm convergence of nonconventional ergodic averages. Ergodic Theory Dynam. Systems 30(2), 321–338 (2010)

Bergelson V., Tao T., Ziegler T.: An inverse theorem for the uniformity seminorms associated with the action of $${\mathbb{F}_p^\infty}$$ . Geom. Funct. Anal. 19(6), 1539–1596 (2010)

Bergelson V., Leibman A., McCutcheon R.: Polynomial Szemerédi theorems for countable modules over integral domains and finite fields. J. Anal. Math. 95, 243–296 (2005)

Bogdanov A., Viola E.: Pseudorandom bits for polynomials. SIAM J. Comput. 39(6), 2464–2486 (2010)

Camarena, O., Szegedy, B.: Nilspaces, nilmanifolds and their morphisms. Preprint. arXiv:1009.3825 (2010)

Frantzikinakis N., Host B., Kra B.: Multiple recurrence and convergence for sequences related to the prime numbers. J. Reine Angew. Math. 611, 131–144 (2007)

Furstenberg H.: Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions. J. Anal. Math. 31, 204–256 (1977)

Furstenberg H., Katznelson Y.: A density version of the Hales-Jewett theorem. J. Anal. Math. 57, 64–119 (1991)

Gödel K.: The consistency of the axiom of choice and of the generalized continuumhypothesis. Proc. Natl. Acad. Sci. USA 24(12), 556–557 (1938)

Gowers T.: A new proof of Szemerédi’s theorem for arithmetic progressions of length four. Geom. Funct. Anal. 8(3), 529–551 (1998)

Gowers T.: A new proof of Szemerédi’s theorem. Geom. Funct. Anal. 11(3), 465–588 (2001)

Gowers T.: Decompositions, approximate structure, transference, and the Hahn-Banach theorem. Bull. Lond. Math. Soc. 42(4), 573–606 (2010)

Gowers T., Wolf J.: The true complexity of a system of linear equations. Proc. Lond. Math. Soc. (3) 100(1), 155–176 (2010)

Gowers, T., Wolf, J.: Linear forms and quadratic uniformity for functions on $${\mathbb{F}_p^n}$$ . Preprint.

Gowers T., Wolf J.: Linear forms and higher-degree uniformity for functions on $${\mathbb{F}_p^n}$$ . Geom. Funct. Anal. 21(1), 36–69 (2011)

Green B., Tao T.: The primes contain arbitrarily long arithmetic progressions. Ann. of Math. 167(2), 481–547 (2008)

Green B., Tao T.: An inverse theorem for the Gowers U 3(G) norm. Proc. Edinburgh Math. Soc. (2) 51(1), 73–153 (2008)

Green B., Tao T.: Linear equations in primes. Ann. of Math. (2) 171(3), 1753–1850 (2010)

Green B., Tao T.: New bounds for Szemerédi’s Theorem, I: progressions of length 4 in finite field geometries. Proc. Lond. Math. Soc. (3) 98(2), 365–392 (2009)

Green, B., Tao, T.: The quantitative behaviour of polynomial orbits on nilmanifolds. Ann. of Math. (2) (to appear)

Green B., Tao T.: The distribution of polynomials over finite fields, with applications to the Gowers norms. Contrib. Discrete Math. 4(2), 1–36 (2009)

Green, B., Tao, T.: An arithmetic regularity lemma, an associated counting lemma, and applications. Preprint

Green, B., Tao, T., Ziegler, T.: An inverse theorem for the Gowers U s+1[N] norm. Preprint

Hall P.: A contribution to the theory of groups of prime-power order. Proc. London Math. Soc. (2) 36(1), 29–95 (1934)

Host B., Kra B.: Nonconventional ergodic averages and nilmanifolds. Ann. of Math. (2) 161(1), 397–488 (2005)

Host B., Kra B.: Parallelepipeds, nilpotent groups and Gowers norms. Bull. Soc. Math. France 136(3), 405–437 (2008)

Kaufman, T., Lovett, S.: Worst case to average case reductions for polynomials. In: Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science, pp. 166–175. IEEE Computer Society, Los Alamitos, CA (2008)

Lazard M.: Sur certaines suites d’éléments dans les groupes libres et leurs extensions. C. R. Acad. Sci. Paris 236, 36–38 (1953)

Leibman A.: Polynomial sequences in groups. J. Algebra 201(1), 189–206 (1998)

Leibman A.: Polynomial mappings of groups. Israel J. Math. 129, 29–60 (2002)

Loeb P.A.: Conversion from nonstandard to standard measure spaces and applications in probability theory. Trans. Amer. Math. Soc. 211, 113–122 (1975)

Lovett, S., Meshulam, R., Samorodnitsky, A.: Inverse conjecture for the Gowers norm is false. In: Dwork, C. (ed.) Proceedings of the 40th Annual ACM Symposium on Theory of Computing held in Victoria, BC, May 17-20, 2008, pp. 547–556. ACM, New York (2008)

Petresco J.: Sur les commutateurs. Math. Z. 61, 348–356 (1954)

Samorodnitsky, A.: Low-degree tests at large distances. In: Feige, U. (ed.) STOC’07–Proceedings of the 39th Annual ACM Symposium on Theory of Computing, San Diego, California, USA, June 11-13, 2007, pp. 506–515. ACM, New York (2007)

Sudan M., Trevisan L., Vadhan S.: Pseudorandom generators without the XOR lemma. J. Comput. System Sci. 62(2), 236–266 (2001)

Szegedy, B.: Gowers norms, regularization and limits of functions on abelian groups. Preprint. Avaible at arXiv:1010.6211 (2010)

Szegedy, B.: Structure of finite nilspaces and inverse theorems for the Gowers norms in bounded exponent groups. Preprint. Avaible at arXiv:1011.1057 (2010)

Tao T.: A quantitative ergodic theory proof of Szemerédi’s theorem. Electron. J. Combin. 13(1), #R99 (2006)

Tao, T.: Structure and randomness in combinatorics. In: FOCS’07: Proceedings of the 48th Annual Symposium on Foundations of Computer Science, pp. 3–18. IEEE Computer Society, Los Alamitos (2007)

Tao, T.: Poincaré’s Legacies, Vol I., American Mathematical Society, Providence (2009)

Tao, T., Vu, V.: Additive Combinatorics, Cambridge Univ. Press, Cambridge (2006)

Tao T., Ziegler T.: The inverse conjecture for the Gowers norm over finite fields via the correspondence principle. Anal. PDE 3(1), 1–20 (2010)

Towsner, H.: A correspondence principle for the Gowers norms. Preprint. Avaible at arXiv:0905.0493 (2009)

Varnavides P.: On certain sets of positive density. J. London Math. Soc. 34, 358–360 (1959)

Ziegler T.: Universal characteristic factors and Furstenberg averages. J. Amer. Math. Soc. 20(1), 53–97 (2007)