The Insulin-Specific T Cells of Nonobese Diabetic Mice Recognize a Weak MHC-Binding Segment in More Than One Form

Journal of Immunology - Tập 178 Số 10 - Trang 6051-6057 - 2007
Matteo Levisetti1,2, Anish Suri2, Shirley J. Petzold2, Emil R. Unanue2
1Department of Medicine and
2Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110

Tóm tắt

AbstractSeveral naturally occurring anti-insulin CD4 T cells were isolated from islet infiltrates of NOD mice. In accordance with the results of others, these T cells recognized the segment of the β-chain from residues 9–23. Peptides encompassing the B:(9–23) sequence bound weakly to I-Ag7 in two main contiguous registers in which two residues at the carboxyl end, P20Gly and P21Glu, influenced binding and T cell reactivity. Naturally occurring insulin-reactive T cells exhibited differing reactivities with the carboxyl-terminal amino acids, although various single residue changes in either the flanks or the core segments affected T cell responses. The insulin peptides represent another example of a weak MHC-binding ligand that is highly immunogenic, giving rise to distinct populations of autoimmune T cells.

Từ khóa


Tài liệu tham khảo

Wegmann, D. R., G. S. Eisenbarth. 2000. It’s insulin. J. Autoimmun. 15: 286-291.

Jasinski, J. M., G. S. Eisenbarth. 2005. Insulin as a primary autoantigen for type 1A diabetes. Clin. Dev. Immunol. 12: 181-186.

Wegmann, D. R., M. Norbury-Glaser, D. Daniel. 1994. Insulin-specific T cells are a predominant component of islet infiltrates in prediabetic NOD mice. Eur. J. Immunol. 24: 1853-1857.

Wegmann, D. R., R. G. Gill, M. Norbury-Glaser, N. Schloot, D. Daniel. 1994. Analysis of the spontaneous T cell response to insulin in NOD mice. J. Autoimmun. 7: 833-843.

Daniel, D., R. G. Gill, N. Schloot, D. Wegmann. 1995. Epitope specificity, cytokine production profile and diabetogenic activity of insulin-specific T cell clones isolated from NOD mice. Eur. J. Immunol. 25: 1056-1062.

Daniel, D., D. R. Wegmann. 1996. Intranasal administration of insulin peptide B:9–23 protects NOD mice from diabetes. Annu. NY Acad. Sci. 778: 371-372.

Harrison, L. C., M. Dempsey-Collier, D. R. Kramer, K. Takahashi. 1996. Aerosol insulin induces regulatory CD8 γδ T cells that prevent murine insulin-dependent diabetes. J. Exp. Med. 184: 2167-2174.

Cetkovic-Cvrlje, M., I. C. Gerling, A. Muir, M. A. Atkinson, J. F. Elliott, E. H. Leiter. 1997. Retardation or acceleration of diabetes in NOD/Lt mice mediated by intrathymic administration of candidate β-cell antigens. Diabetes 46: 1975-1982.

French, M. B., J. Allison, D. S. Cram, H. E. Thomas, M. Dempsey-Collier, A. Silva, H. M. Georgiou, T. W. Kay, L. C. Harrison, A. M. Lew. 1997. Transgenic expression of mouse proinsulin II prevents diabetes in nonobese diabetic mice. Diabetes 46: 34-39.

Jaeckel, E., M. A. Lipes, H. von Boehmer. 2004. Recessive tolerance to preproinsulin 2 reduces but does not abolish type 1 diabetes. Nat. Immunol. 5: 1028-1035.

Nakayama, M., N. Abiru, H. Moriyama, N. Babaya, E. Liu, D. Miao, L. Yu, D. R. Wegmann, J. C. Hutton, J. F. Elliott, G. S. Eisenbarth. 2005. Prime role for an insulin epitope in the development of type 1 diabetes in NOD mice. Nature 435: 220-223.

Jasinski, J. M., L. Yu, M. Nakayama, M. M. Li, M. A. Lipes, G. S. Eisenbarth, E. Liu. 2006. Transgenic insulin (B:9–23) T-cell receptor mice develop autoimmune diabetes dependent upon RAG genotype, H-2g7 homozygosity, and insulin 2 gene knockout. Diabetes 55: 1978-1984.

Zekzer, D., F. S. Wong, L. Wen, M. Altieri, T. Gurlo, H. von Grafenstein, R. S. Sherwin. 1997. Inhibition of diabetes by an insulin-reactive CD4 T-cell clone in the nonobese diabetic mouse. Diabetes 46: 1124-1132.

Bergerot, I., G. A. Arreaza, M. J. Cameron, M. D. Burdick, R. M. Strieter, S. W. Chensue, S. Chakrabarti, T. L. Delovitch. 1999. Insulin B-chain reactive CD4+ regulatory T-cells induced by oral insulin treatment protect from type 1 diabetes by blocking the cytokine secretion and pancreatic infiltration of diabetogenic effector T-cells. Diabetes 48: 1720-1729.

Du, W., F. S. Wong, M. O. Li, J. Peng, H. Qi, R. A. Flavell, R. Sherwin, L. Wen. 2006. TGF-β signaling is required for the function of insulin-reactive T regulatory cells. J. Clin. Invest. 116: 1360-1370.

Hausmann, D. H., B. Yu, S. Hausmann, K. W. Wucherpfennig. 1999. pH-dependent peptide binding properties of the type I diabetes-associated I-Ag7 molecule: rapid release of CLIP at an endosomal pH. J. Exp. Med. 189: 1723-1734.

Stratmann, T., V. Apostolopoulos, V. Mallet-Designe, A. L. Corper, C. A. Scott, I. A. Wilson, A. S. Kang, L. Teyton. 2000. The I-Ag7 MHC class II molecule linked to murine diabetes is a promiscuous peptide binder. J. Immunol. 165: 3214-3225.

Yu, B., L. Gauthier, D. H. Hausmann, K. W. Wucherpfennig. 2000. Binding of conserved islet peptides by human and murine MHC class II molecules associated with susceptibility to type I diabetes. Eur. J. Immunol. 30: 2497-2506.

Latek, R. R., A. Suri, S. J. Petzold, C. A. Nelson, O. Kanagawa, E. R. Unanue, D. H. Fremont. 2000. Structural basis of peptide binding and presentation by the type I diabetes-associated MHC class II molecule of NOD mice. Immunity 12: 699-710.

Abiru, N., D. Wegmann, E. Kawasaki, P. Gottlieb, E. Simone, G. S. Eisenbarth. 2000. Dual overlapping peptides recognized by insulin peptide B:9–23 T cell receptor AV13S3 T cell clones of the NOD mouse. J. Autoimmun. 14: 231-237.

Halbout, P., J. P. Briand, C. Becourt, S. Muller, C. Boitard. 2002. T cell response to preproinsulin I and II in the nonobese diabetic mouse. J. Immunol. 169: 2436-2443.

Lacy, P. E., M. Kostianovsky. 1967. Method for the isolation of intact islets of Langerhans from the rat pancreas. Diabetes 16: 35-39.

Suri, A., I. Vidavsky, K. van der Drift, O. Kanagawa, M. L. Gross, E. R. Unanue. 2002. In APCs, the autologous peptides selected by the diabetogenic I-Ag7 molecule are unique and determined by the amino acid changes in the P9 pocket. J. Immunol. 168: 1235-1243.

Suri, A., J. J. Walters, M. L. Gross, E. R. Unanue. 2005. Natural peptides selected by diabetogenic DQ8 and murine I-Ag7 molecules show common sequence specificity. J. Clin. Invest. 115: 2268-2276.

Corper, A. L., T. Stratmann, V. Apostolopoulos, C. A. Scott, K. C. Garcia, A. S. Kang, I. A. Wilson, L. Teyton. 2000. A structural framework for deciphering the link between I-Ag7 and autoimmune diabetes. Science 288: 505-511.

Lee, K. H., K. W. Wucherpfennig, D. C. Wiley. 2001. Structure of a human insulin peptide-HLA-DQ8 complex and susceptibility to type 1 diabetes. Nat. Immunol. 2: 501-507.

Suri, A., J. J. Walters, O. Kanagawa, M. L. Gross, E. R. Unanue. 2003. Specificity of peptide selection by Ag-presenting cells homozygous or heterozygous for expression of class II MHC molecules: the lack of competition. Proc. Natl. Acad. Sci. USA 100: 5330-5335.

Munz, C., M. Hofmann, K. Yoshida, A. K. Moustakas, H. Kikutani, S. Stevanovic, G. K. Papadopoulos, H. G. Rammensee. 2002. Peptide analysis, stability studies, and structural modeling explain contradictory peptide motifs and unique properties of the NOD mouse MHC class II molecule H2-Ag7. Eur. J. Immunol. 32: 2105-2116.

Zavala-Ruiz, Z., I. Strug, M. W. Anderson, J. Gorski, L. J. Stern. 2004. A polymorphic pocket at the P10 position contributes to peptide binding specificity in class II MHC proteins. Chem. Biol. 11: 1395-1402.

Carson, R. T., K. M. Vignali, D. L. Woodland, D. A. Vignali. 1997. T cell receptor recognition of MHC class II-bound peptide flanking residues enhances immunogenicity and results in altered TCR V region usage. Immunity 7: 387-399.

Velazquez, C., I. Vidavsky, K. van der Drift, M. L. Gross, E. R. Unanue. 2002. Chemical identification of a low abundance lysozyme peptide family bound to I-Ak histocompatibility molecules. J. Biol. Chem. 277: 42514-42522.

Alleva, D. G., A. Gaur, L. Jin, D. Wegmann, P. A. Gottlieb, A. Pahuja, E. B. Johnson, T. Motheral, A. Putnam, P. D. Crowe, et al 2002. Immunological characterization and therapeutic activity of an altered-peptide ligand, NBI-6024, based on the immunodominant type 1 diabetes autoantigen insulin B-chain (9–23) peptide. Diabetes 51: 2126-2134.

Liu, G. Y., D. C. Wraith. 1995. Affinity for class II MHC determines the extent to which soluble peptides tolerize autoreactive T cells in naive and primed adult mice: implications for autoimmunity. Int. Immunol. 7: 1255-1263.

Liu, G. Y., P. J. Fairchild, R. M. Smith, J. R. Prowle, D. Kioussis, D. C. Wraith. 1995. Low avidity recognition of self-antigen by T cells permits escape from central tolerance. Immunity 3: 407-415.

Carrasco-Marin, E., J. Shimizu, O. Kanagawa, E. R. Unanue. 1996. The class II MHC I-Ag7 molecules from nonobese diabetic mice are poor peptide binders. J. Immunol. 156: 450-458.

Kanagawa, O., S. M. Martin, B. A. Vaupel, E. Carrasco-Marin, E. R. Unanue. 1998. Autoreactivity of T cells from nonobese diabetic mice: an I-Ag7-dependent reaction. Proc. Natl. Acad. Sci. USA 95: 1721-1724.

Fairchild, P. J., R. Wildgoose, E. Atherton, S. Webb, D. C. Wraith. 1993. An autoantigenic T cell epitope forms unstable complexes with class II MHC: a novel route for escape from tolerance induction. Int. Immunol. 5: 1151-1158.

Seamons, A., J. Sutton, D. Bai, E. Baird, N. Bonn, B. F. Kafsack, J. Shabanowitz, D. F. Hunt, C. Beeson, J. Goverman. 2003. Competition between two MHC binding registers in a single peptide processed from myelin basic protein influences tolerance and susceptibility to autoimmunity. J. Exp. Med. 197: 1391-1397.

Martinez, N. R., P. Augstein, A. K. Moustakas, G. K. Papadopoulos, S. Gregori, L. Adorini, D. C. Jackson, L. C. Harrison. 2003. Disabling an integral CTL epitope allows suppression of autoimmune diabetes by intranasal proinsulin peptide. J. Clin. Invest. 111: 1365-1371.

McInerney, M. F., J. C. Flynn, P. J. Goldblatt, S. M. Najjar, R. S. Sherwin, C. A. Janeway, Jr. 1996. High density insulin receptor-positive T lymphocytes from nonobese diabetic mice transfer insulitis and diabetes. J. Immunol. 157: 3716-3726.

Maynard, J., K. Petersson, D. H. Wilson, E. J. Adams, S. E. Blondelle, M. J. Boulanger, D. B. Wilson, K. C. Garcia. 2005. Structure of an autoimmune T cell receptor complexed with class II peptide-MHC: insights into MHC bias and antigen specificity. Immunity 22: 81-92.

Hahn, M., M. J. Nicholson, J. Pyrdol, K. W. Wucherpfennig. 2005. Unconventional topology of self peptide-major histocompatibility complex binding by a human autoimmune T cell receptor. Nat. Immunol. 6: 490-496.

Li, Y., Y. Huang, J. Lue, J. A. Quandt, R. Martin, R. A. Mariuzza. 2005. Structure of a human autoimmune TCR bound to a myelin basic protein self-peptide and a multiple sclerosis-associated MHC class II molecule. EMBO J. 24: 2968-2979.