The Influence of Mineralization on Intratrabecular Stress and Strain Distribution in Developing Trabecular Bone
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bourne B. C., M. C. H. van der Meulen. Finite element models predict cancellous apparent modulus when tissue modulus is scaled from specimen CT-attenuation. J. Biomech. 37: 613–621, 2004
Burger E. H., J. Klein-Nulend, J. P. Veldhuijzen. Modulation of osteogenesis in fetal bone rudiments by mechanical stress in vitro. J. Biomech. 24: 101–109, 1991
Camacho D. L., R. H. Hopper, G. M. Lin, B. S. Myers. An improved method for finite element mesh generation of geometrically complex structures with application to the skullbase. J. Biomech. 30: 1067–1070, 1997
Ciarelli T. E., D. P. Fyhrie, A. M. Parfitt. Effects of vertebral bone fragility and bone formation rate on the mineralization levels of cancellous bone from white females. Bone 32: 311–315, 2003
Currey J. D. Effects of differences in mineralization on the mechanical properties of bone. Philos. Trans. R. Soc. Lond. B Biol. Sci. 304: 509–518, 1984
Currey J. D. The effect of porosity and mineral content on the Young’s modulus of elasticity of compact bone. J. Biomech. 21: 131–139, 1988
Currey J. D. What determines the bending strength of compact bone? J. Exp. Biol. 202: 2495–2503, 1999
de Vries J. I. P., G. H. A. Visser, H. F. R. Prechtl. The emergence of fetal behaviour. II. Quantitative aspects. Early Hum. Dev. 12: 99–120, 1985
Evans H. E., W. O. Sack. Prenatal development of domestic and laboratory mammals: Growth curves, external features and selected references. Zentralbl. Veterinarmed. [C] 2: 11–45, 1973
Fyhrie D. P., M. B. Schaffler. Failure mechanisms in human vertebral cancellous bone. Bone 15: 105–109, 1994
Guldberg R. E., S. J. Hollister, G. T. Charras. The accuracy of digital image-based finite element models. J. Biomech. Eng. 120: 289–295, 1998
Homminga J., B. van Rietbergen, E. M. Lochmüller, H. Weinans, F. Eckstein, R. Huiskes. The osteoporotic vertebral structure is well adapted to the loads of daily life, but not to infrequent “error” loads. Bone 34: 510–516, 2004
Jaasma M. J., H. H. Bayraktar, G. L. Niebur, T. M. Keaveny. Biomechanical effects of intraspecimen variation in tissue modulus for trabecular bone. J. Biomech. 35: 237–246, 2002
Kabel J., B. van Rietbergen, M. Dalstra, A. Odgaard, R. Huiskes. The role of an effective isotropic tissue modulus in the elastic properties of cancellous bone. J. Biomech. 32: 673–80, 1999
Keaveny T. M., X. E. Guo, E. F. Wachtel, T. A. McMahon, W. C. Hayes. Trabecular bone exhibits fully linear elastic behaviour and yields at low strains. J. Biomech. 27: 1127–1136, 1994
Mori S., R. Harruf, W. Ambrosius, D. B. Burr. Trabecular bone volume and microdamage accumulation in the femoral heads of women with and without femoral neck fractures. Bone 21: 521–526, 1997
Mulder L., J. H. Koolstra, T. M. G. J. van Eijden. Accuracy of microCT in the quantitative determination of the degree and distribution of mineralization in developing bone. Acta Radiol. 45: 769–777, 2004
Mulder L., J. H. Koolstra, W. A. Weijs, T. M. G. J. van Eijden. Architecture and mineralization of developing trabecular bone in the pig mandibular condyle. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 285: 659–667, 2005
Mulder L., J. H. Koolstra, H. W. de Jonge, T. M. G. J. van Eijden. Architecture and mineralization of developing cortical and trabecular bone of the mandible. Anat. Embryol. 211: 71–78, 2006
Mulder, L., L. J. van Ruijven, J. H. Koolstra, T. M. G. J. van Eijden. Biomechanical consequences of developmental changes in trabecular architecture and mineralization of the pig mandibular condyle. J. Biomech. 40:1575–1582, 2007
Nuzzo S., C. Meneghini, P. Braillon, R. Bouvier, S. Mobilio, F. Peyrin. Microarchitectural and physical changes during fetal growth in human vertebral bone. J. Bone Miner. Res. 18: 760–768, 2003
Ouyang J., G. T. Yang, W. Z. Wu, Q. A. Zhu, S. Z. Zhong. Biomechanical characteristics of human trabecular bone. Clin. Biomech. 12: 522–524, 1997
Pidaparti R. M., C. H. Turner. Cancellous bone architecture: advantages of nonorhtogonal trabecular alignment under multidirectional joint loading. J. Biomech. 26: 111–119, 1997
Pistoia W., B. van Rietbergen, E. M. Lochmüller, C. A. Lill, F. Eckstein, P. Rüegsegger. Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images. Bone 30: 842–848, 2002
Rho J. Y., T. Y. Tsui, G. M. Pharr. Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation. Biomaterials 18: 1325–1330, 1997
Roy M. E., J. Y. Rho, T. Y. Tsui, N. D. Evans, G. M. Pharr. Mechanical and morphological variation of the human lumbar vertebral cortical and trabecular bone. J. Biomed. Mater. Res. 44: 191–197, 1999
van der Linden J. C., D. H. Birkenhäger-Frenkel, J. A. N. Verhaar, H. Weinans. Trabecular bone’s mechanical properties are affected by its non-uniform mineral distribution. J. Biomech. 34: 1573–1580, 2001
van Eijden T. M. G. J., L. J. van Ruijven, E. B. W. Giesen. Bone tissue stiffness in the mandibular condyle is dependent on the direction and density of the cancellous structure. Calcif. Tissue Int. 75: 502–508, 2004
van Rietbergen B., H. Weinans, R. Huiskes, A. Odgaard. A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models. J. Biomech. 28: 69–81, 1995
van Rietbergen B., R. Müller, D. Ulrich, P. Rüegsegger, R. Huiskes. Tissue stresses and strain in trabeculae of a canine proximal femur can be quantified from computer reconstructions. J. Biomech. 32: 165–173, 1999
van Rietbergen B., R. Huiskes, F. Eckstein, P. Rüegsegger. Trabecular bone tissue strains in healthy and osteoporotic human femur. J. Bone Miner. Res. 18: 1781–1788, 2003
van Ruijven L. J., E. B. W. Giesen, M. Farella, T. M. G. J. van Eijden. Prediction of mechanical properties of the cancellous bone of the mandibular condyle. J. Dent. Res. 82: 819–823, 2003
van Ruijven L. J., L. Mulder, T. M. G. J. van Eijden. Variations in mineralization affect the stress and strain distributions in cortical and trabecular bone. J. Biomech. 40: 1211–1218, 2007
Verhulp E., B. van Rietbergen, R. Huiskes. Comparison of micro-level and continuum-level voxel models of the proximal femur. J. Biomech. 39:2951–2957, 2006