The Influence of Mineralization on Intratrabecular Stress and Strain Distribution in Developing Trabecular Bone

Springer Science and Business Media LLC - Tập 35 Số 10 - Trang 1668-1677 - 2007
Lars Mulder1, L.J. van Ruijven1, J.H. Koolstra1, T.M.G.J. van Eijden1
1Department of Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), Universiteit van Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bourne B. C., M. C. H. van der Meulen. Finite element models predict cancellous apparent modulus when tissue modulus is scaled from specimen CT-attenuation. J. Biomech. 37: 613–621, 2004

Burger E. H., J. Klein-Nulend, J. P. Veldhuijzen. Modulation of osteogenesis in fetal bone rudiments by mechanical stress in vitro. J. Biomech. 24: 101–109, 1991

Camacho D. L., R. H. Hopper, G. M. Lin, B. S. Myers. An improved method for finite element mesh generation of geometrically complex structures with application to the skullbase. J. Biomech. 30: 1067–1070, 1997

Ciarelli T. E., D. P. Fyhrie, A. M. Parfitt. Effects of vertebral bone fragility and bone formation rate on the mineralization levels of cancellous bone from white females. Bone 32: 311–315, 2003

Currey J. D. Effects of differences in mineralization on the mechanical properties of bone. Philos. Trans. R. Soc. Lond. B Biol. Sci. 304: 509–518, 1984

Currey J. D. The effect of porosity and mineral content on the Young’s modulus of elasticity of compact bone. J. Biomech. 21: 131–139, 1988

Currey J. D. What determines the bending strength of compact bone? J. Exp. Biol. 202: 2495–2503, 1999

de Vries J. I. P., G. H. A. Visser, H. F. R. Prechtl. The emergence of fetal behaviour. II. Quantitative aspects. Early Hum. Dev. 12: 99–120, 1985

Evans H. E., W. O. Sack. Prenatal development of domestic and laboratory mammals: Growth curves, external features and selected references. Zentralbl. Veterinarmed. [C] 2: 11–45, 1973

Fyhrie D. P., M. B. Schaffler. Failure mechanisms in human vertebral cancellous bone. Bone 15: 105–109, 1994

Guldberg R. E., S. J. Hollister, G. T. Charras. The accuracy of digital image-based finite element models. J. Biomech. Eng. 120: 289–295, 1998

Homminga J., B. van Rietbergen, E. M. Lochmüller, H. Weinans, F. Eckstein, R. Huiskes. The osteoporotic vertebral structure is well adapted to the loads of daily life, but not to infrequent “error” loads. Bone 34: 510–516, 2004

Jaasma M. J., H. H. Bayraktar, G. L. Niebur, T. M. Keaveny. Biomechanical effects of intraspecimen variation in tissue modulus for trabecular bone. J. Biomech. 35: 237–246, 2002

Kabel J., B. van Rietbergen, M. Dalstra, A. Odgaard, R. Huiskes. The role of an effective isotropic tissue modulus in the elastic properties of cancellous bone. J. Biomech. 32: 673–80, 1999

Keaveny T. M., X. E. Guo, E. F. Wachtel, T. A. McMahon, W. C. Hayes. Trabecular bone exhibits fully linear elastic behaviour and yields at low strains. J. Biomech. 27: 1127–1136, 1994

Mori S., R. Harruf, W. Ambrosius, D. B. Burr. Trabecular bone volume and microdamage accumulation in the femoral heads of women with and without femoral neck fractures. Bone 21: 521–526, 1997

Mulder L., J. H. Koolstra, T. M. G. J. van Eijden. Accuracy of microCT in the quantitative determination of the degree and distribution of mineralization in developing bone. Acta Radiol. 45: 769–777, 2004

Mulder L., J. H. Koolstra, W. A. Weijs, T. M. G. J. van Eijden. Architecture and mineralization of developing trabecular bone in the pig mandibular condyle. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 285: 659–667, 2005

Mulder L., J. H. Koolstra, H. W. de Jonge, T. M. G. J. van Eijden. Architecture and mineralization of developing cortical and trabecular bone of the mandible. Anat. Embryol. 211: 71–78, 2006

Mulder, L., L. J. van Ruijven, J. H. Koolstra, T. M. G. J. van Eijden. Biomechanical consequences of developmental changes in trabecular architecture and mineralization of the pig mandibular condyle. J. Biomech. 40:1575–1582, 2007

Nuzzo S., C. Meneghini, P. Braillon, R. Bouvier, S. Mobilio, F. Peyrin. Microarchitectural and physical changes during fetal growth in human vertebral bone. J. Bone Miner. Res. 18: 760–768, 2003

Ouyang J., G. T. Yang, W. Z. Wu, Q. A. Zhu, S. Z. Zhong. Biomechanical characteristics of human trabecular bone. Clin. Biomech. 12: 522–524, 1997

Pidaparti R. M., C. H. Turner. Cancellous bone architecture: advantages of nonorhtogonal trabecular alignment under multidirectional joint loading. J. Biomech. 26: 111–119, 1997

Pistoia W., B. van Rietbergen, E. M. Lochmüller, C. A. Lill, F. Eckstein, P. Rüegsegger. Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images. Bone 30: 842–848, 2002

Rho J. Y., T. Y. Tsui, G. M. Pharr. Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation. Biomaterials 18: 1325–1330, 1997

Roy M. E., J. Y. Rho, T. Y. Tsui, N. D. Evans, G. M. Pharr. Mechanical and morphological variation of the human lumbar vertebral cortical and trabecular bone. J. Biomed. Mater. Res. 44: 191–197, 1999

van der Linden J. C., D. H. Birkenhäger-Frenkel, J. A. N. Verhaar, H. Weinans. Trabecular bone’s mechanical properties are affected by its non-uniform mineral distribution. J. Biomech. 34: 1573–1580, 2001

van Eijden T. M. G. J., L. J. van Ruijven, E. B. W. Giesen. Bone tissue stiffness in the mandibular condyle is dependent on the direction and density of the cancellous structure. Calcif. Tissue Int. 75: 502–508, 2004

van Rietbergen B., H. Weinans, R. Huiskes, A. Odgaard. A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models. J. Biomech. 28: 69–81, 1995

van Rietbergen B., R. Müller, D. Ulrich, P. Rüegsegger, R. Huiskes. Tissue stresses and strain in trabeculae of a canine proximal femur can be quantified from computer reconstructions. J. Biomech. 32: 165–173, 1999

van Rietbergen B., R. Huiskes, F. Eckstein, P. Rüegsegger. Trabecular bone tissue strains in healthy and osteoporotic human femur. J. Bone Miner. Res. 18: 1781–1788, 2003

van Ruijven L. J., E. B. W. Giesen, M. Farella, T. M. G. J. van Eijden. Prediction of mechanical properties of the cancellous bone of the mandibular condyle. J. Dent. Res. 82: 819–823, 2003

van Ruijven L. J., L. Mulder, T. M. G. J. van Eijden. Variations in mineralization affect the stress and strain distributions in cortical and trabecular bone. J. Biomech. 40: 1211–1218, 2007

Verhulp E., B. van Rietbergen, R. Huiskes. Comparison of micro-level and continuum-level voxel models of the proximal femur. J. Biomech. 39:2951–2957, 2006

Zioupos P., J. D. Currey. The extent of microcracking and the morphology of microcracks in damaged bone. J. Mater. Sci. 29: 978–986, 1994