Ảnh hưởng của sự thích nghi ngoài in-vitro của Stevia rebaudiana (Bertoni) được xử lý bằng tác nhân gây kích thích đối với sinh khối tăng trưởng, đặc điểm sinh lý, tích lũy glycoside steviol và mẫu biểu hiện gen đường sinh tổng hợp

Ashrita1,2, Shiv Shanker Pandey1,2, Ashish R. Warghat1,2
1Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
2Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India

Tóm tắt

Stevia rebaudiana (Bertoni) là một loại thảo mộc quan trọng về mặt công nghiệp nhờ vào các hợp chất sinh hoạt có vị ngọt, đặc biệt là rebaudioside A và stevioside. Nhu cầu công nghiệp đối với các glycoside steviol chủ yếu được đáp ứng bằng các phương pháp nông nghiệp truyền thống, dẫn đến sự tích lũy không đồng nhất glycoside steviol (SGs) trong sản phẩm của S. rebaudiana, chủ yếu do những thay đổi trong điều kiện khí hậu khác nhau, kiểu gen và giống cây trồng. Do đó, cần có một quy trình mạnh mẽ để cung cấp vật liệu trồng chất lượng nhằm sản xuất S. rebaudiana giàu metabolite. Sự thích nghi ngoài in-vitro tại các khu vực tự nhiên được cho là phần quan trọng trong việc xác định số phận của các cây non được tái sinh thông qua phương pháp vi nhân. Trong cuộc điều tra hiện tại, các cây non được vi nhân đã được xử lý bằng tác nhân kích thích được cho thích nghi trong một tháng; sau đó, tỷ lệ sống sót, sự phát triển và sản lượng sinh khối lá, quang hợp diệp lục, phân tích sinh hóa của các metabolite chuyên biệt, và phân tích biểu hiện gen ứng cử viên được thực hiện. Một tỷ lệ cao (80–100%) cây đã thích nghi được thu được sau 30 ngày. Các cây được xử lý bằng polyethylene glycol (PEG) 1.5 mg L−1 đạt được chiều dài thân cao hơn (14.10 cm) và sinh khối lá tối đa (537.60 mg FW và 111.03 mg DW). Các thông số quang hợp diệp lục và hàm lượng sắc tố cho thấy hiệu suất quang hợp ổn định trong tất cả các điều kiện. Tối đa tổng SGs được tích lũy trong các cây được xử lý bằng PEG 1.5 mg L−1. Phân tích biểu hiện của các gen đường sinh tổng hợp SG cho thấy sự tương quan rõ ràng với hàm lượng metabolite. Nghiên cứu này tiết lộ rằng các cây được xử lý bằng PEG 1.5 mg L−1 thể hiện tốt hơn về sự phát triển, các thuộc tính năng suất và các thông số tích lũy metabolite sau một tháng thích nghi ngoài in-vitro.

Từ khóa

#Stevia rebaudiana #glycoside steviol #xử lý bằng tác nhân kích thích #sinh khối #biểu hiện gen

Tài liệu tham khảo

Acosta-Motos JR, Noguera-Vera L, Barba-Espín G, Piqueras A, Hernandez JA (2019) Antioxidant metabolism and chlorophyll fluorescence during the acclimatisation to ex vitro conditions of micropropagated Stevia rebaudiana Bertoni plants. Antioxidants 8(12):615. https://doi.org/10.3390/antiox8120615 Ahmad MA, Javed R, Adeel M, Rizwan M, Yang Y (2020) PEG 6000-stimulated drought stress improves the attributes of in vitro growth, steviol glycosides production, and antioxidant activities in Stevia rebaudiana Bertoni. Plants 9(11):1552. https://doi.org/10.3390/plants9111552 Alfajaro MM, Rho MC, Kim HJ, Park JG, Kim DS, Hosmillo M, Son KY, Lee JH, Park SI, Kang MI, Ryu YB (2014) Anti-rotavirus effects by combination therapy of stevioside and Sophora flavescens extract. Res Vet Sci 96(3):567–575. https://doi.org/10.1016/j.rvsc.2014.03.011 Ali-Ahmad M, Hughes HG, Safadi F (1998) Studies on stomatal function, epicuticular wax and stem-root transition region of polyethylene glycol-treated and non-treated in vitro grape plantlets. Vitr Cell Dev Biol Plant 34:1–7. https://doi.org/10.1007/BF02823115 Aliniaeifard S, Asayesh ZM, Driver J, Vahdati K (2020) Stomatal features and desiccation responses of Persian walnut leaf as caused by in vitro stimuli aimed at stomatal closure. Trees 34:1219–1232. https://doi.org/10.1007/s00468-020-01992-x Badran AE, Abd Alhady MR, Hassan WA (2015) In vitro evaluation of some traits in Stevia rebaudiana (Bertoni) under drought stress and their relationship on stevioside content. Am J Plant Sci 6(05):746. https://doi.org/10.4236/ajps.2015.65080 Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113. https://doi.org/10.1146/annurev.arplant.59.032607.092759 Bayraktar M, Naziri E, Akgun IH, Karabey F, Ilhan E, Akyol B, Bedir E, Gurel, (2016) Elicitor induced stevioside production, in vitro shoot growth, and biomass accumulation in micropropagated Stevia rebaudiana. Plant Cell Tiss Org Cult 127:289–300. https://doi.org/10.1016/j.sajb.2020.10.023 Belkheir AK, Gaid M, Liu B, Hänsch R, Beerhues L (2016) Benzophenone synthase and chalcone synthase accumulate in the mesophyll of Hypericum perforatum leaves at different developmental stages. Front Plant Sci 7:921. https://doi.org/10.3389/fpls.2016.00921 Boonkaewwan C, Ao M, Toskulkao C, Rao MC (2008) Specific immunomodulatory and secretory activities of stevioside and steviol in intestinal cells. J Agri Food Chem 56(10):3777–3784. https://doi.org/10.1021/jf072681o Brandle J, Tilmer PG (2007) Steviol glycoside biosynthesis. Phytochem 68(14):1855–1863. https://doi.org/10.1016/j.phytochem.2007.02.010 Carvalho LC, Leonor Osório M, Manuela Chaves M, Amâncio S (2001) Chlorophyll fluorescence as an indicator of photosynthetic functioning of in vitro grapevine and chestnut plantlets under ex vitro acclimatization. Plant Cell Tiss Organ Cult 67(3):271–280. https://doi.org/10.1023/A:1012722112406 Carvalho LC, Vilela BJ, Vidigal P, Mullineaux PM, Amâncio S (2006) Activation of the ascorbate-glutathione cycle is an early response of micropropagated Vitis vinifera L. explants transferred to ex vitro. Int J Plant Sci 167(4):759–770. https://doi.org/10.1086/503919 Ceunen S, Geuns JMC (2013) Steviol glycosides: chemical diversity, metabolism, and function. J Nat Prod 76:1201–1228. https://doi.org/10.1021/np400203b Chaari-Rkhis A, Maalej M, Chelli-Chaabouni A, Fki L, Drira N (2015) Photosynthesis parameters during acclimatization of in-vitro-grown olive plantlets. Photosynthetica 53:613–616. https://doi.org/10.1007/s11099-015-0138-x da Silva JAT, Hossain MM, Sharma M, Dobránszki J, Cardoso JC, Songjun ZENG (2017) Acclimatization of in vitro-derived Dendrobium. Hortic Plant J 3(3):110–124. https://doi.org/10.1016/j.hpj.2017.07.009 Deng N, Liu C, Chang E, Ji J, Yao X, Yue J, Bartish IV, Chen L, Jiang Z, Shi S (2017) High temperature and UV-C treatments affect stilbenoid accumulation and related gene expression levels in Gnetum parvifolium. Electron J Biotechnol 25:43–49. https://doi.org/10.1016/j.ejbt.2016.11.001 Dev R, Singh SK, Dayal V, Kumar K, Singh T (2019) Standardization of in vitro hardening strategies for tissue cultured wine grape (Vitis vinifera L.) genotypes. Int J Curr Microbiol App Sci 8(2):2108–2117. https://doi.org/10.20546/ijcmas.2019.802.244 Din AFMZE, Ibrahim MFM, Farag R, El-Gawad HGA, El-Banhawy A, Alaraidh IA, Rashad YM, Lashin I, El-Yazied AA, Elkelish A, Elbar OHA (2020) Influence of polyethylene glycol on leaf anatomy, stomatal behavior, water loss, and some physiological traits of date palm plantlets grown in vitro and ex vitro. Plants (basel) 9(11):1440. https://doi.org/10.3390/plants9111440 Dudareva N, Martin D, Kish CM, Kolosova N, Gorenstein N, Fäldt J, Miller B, Bohlmannb J (2003) Biosynthesis in Snapdragon: function and expression of three terpene synthase genes of a new terpene synthase subfamily. Plant Cell 15:1227–1241. https://doi.org/10.1105/tpc.011015 Ďurkovič J, Čaňová I, Pichler V (2009) Water loss and chlorophyll fluorescence during ex vitro acclimatization in micropropagated black mulberry (Morus nigra L.). Propag Ornam Plants 9:107–112 El Dawayati MM, Bar OHAE, Zaid ZE, El Din AFZ (2012) In vitro morpho-histological studies of newly developed embryos from abnormal malformed embryos of date palm cv. Gundila under desiccation effect of polyethelyne glycol treatments. Ann Agric Sci 57:117–128. https://doi.org/10.1016/j.aoas.2012.08.005 Grotewold E (2006) The genetics and biochemistry of floral pigments. Annu Rev Plant Biol 57(1):761–780. https://doi.org/10.1146/annurev.arplant.57.032905.105248 Gupta E, Kaushik S, Purwar S, Sharma R, Balapure AK, Sundaram S (2017) Anticancer potential of steviol in MCF-7 human breast cancer cells. Pharmacogn Mag 13(51):345–350. https://doi.org/10.4103/pm.pm_29_17 Gupta P, Sharma S, Saxena S (2015) Biomass yield and steviol glycoside production in callus and suspension culture of Stevia rebaudiana treated with proline and polyethylene glycol. Appl Biochem Biotechnol 176(3):863–874. https://doi.org/10.1007/s12010-015-1616-0 Hajihashemi S, Geuns J, Ehsanpour AA (2013) Gene transcription of steviol glycoside biosynthesis in Stevia rebaudiana Bertoni under polyethylene glycol, paclobutrazol and gibberellic acid treatments in vitro. Acta Physiol Plant 35(6):2009–2014. https://doi.org/10.1007/s11738-013-1226-9 Hajihashemi S, Geuns JM (2016) Gene transcription and steviol glycoside accumulation in Stevia rebaudiana under polyethylene glycol-induced drought stress in greenhouse cultivation. FEBS Open Bio 6(9):937–944. https://doi.org/10.1002/2211-5463.12099 Hajihashemi S, Sofo A (2018) The effect of polyethylene glycol-induced drought stress on photosynthesis, carbohydrates and cell membrane in Stevia rebaudiana grown in greenhouse. Acta Physiol Plan 40(8):142. https://doi.org/10.1007/s11738-018-2722-8 Hellfritsch C, Brockhoff A, Stähler F, Meyerhof W, Hofmann T (2012) Human psychometric and taste receptor responses to steviol glycosides. J Agric Food Chem 60(27):6782–6793. https://doi.org/10.1021/jf301297n Jacomini E, Bertani A, Mapelli S (1988) Accumulation of polyethylene glycol 6000 and its effects on water content and carbohydrate level in water-stressed tomato plants. Canad J Bot 66(5):970–973. https://doi.org/10.1139/b88-140 Jain P, Kachhwaha S, Kothari SL (2009) Improved micropropagation protocol and enhancement in biomass and chlorophyll content in Stevia rebaudiana (Bert) Bertoni by using high copper levels in the culture medium. Sci Hortic 119(3):315–319. https://doi.org/10.1016/j.scienta.2008.08.015 Kalaji MH, Guo P (2008) Chlorophyll fluorescence: a useful tool in barley plant breeding programs. In: Sanchez A, Gutierrez SJ (eds) Photochemistry research progress. Nova Science Publishers, Inc., New York, pp 439–463 Kumar H, Kaul K, Bajpai-Gupta S, Kaul VK, Kumar S (2012) A comprehensive analysis of fifteen genes of steviol glycosides biosynthesis pathway in Stevia rebaudiana (Bertoni). Gene 492(1):276–284. https://doi.org/10.1016/j.gene.2011.10.015 Langlois-Meurinne M, Gachon CM, Saindrenan P (2005) Pathogen-responsive expression of glycosyltransferase genes UGT73B3 and UGT73B5 is necessary for resistance to Pseudomonas syringae pv tomato in Arabidopsis. Plant Physiol 139(4):1890–1901. https://doi.org/10.1104/pp.105.067223 Latowski D, Kuczyńska P, Strzałka K (2011) Xanthophyll cycle—a mechanism protecting plants against oxidative stress. Redox Rep 16:78–90. https://doi.org/10.1179/174329211X13020951739938 Le Roy J, Huss B, Creach A, Hawkins S, Neutelings G (2016) Glycosylation is a major regulator of phenylpropanoid availability and biological activity in plants. Front Plant Sci 7:735. https://doi.org/10.3389/fpls.2016.00735 Li Y, Kong D, Bai M, He H, Wang H, Wu H (2019) Correlation of the temporal and spatial expression patterns of HQT with the biosynthesis and accumulation of chlorogenic acid in Lonicera japonica flowers. Hortic Res 6:73. https://doi.org/10.1038/s41438-019-0154-2 Li Y, Kong D, Fu Y, Sussman MR, Wu H (2020) The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol Biochem 148:80–89. https://doi.org/10.1016/j.plaphy.2020.01.006 Libik-Konieczny M, Michalec-Warzecha Ż, Dziurka M, Zastawny O, Konieczny R, Rozpądek P, Pistelli L (2020) Steviol glycosides profile in Stevia rebaudiana Bertoni hairy roots cultured under oxidative stress-inducing conditions. Appl Microbiol Biotechnol 104(13):5929–5941. https://doi.org/10.1007/s00253-020-10661-5 Lichtenthaler HK, Buschmann C (2001) Extraction of phtosynthetic tissues: chlorophylls and carotenoids. Curr Protoc Food Anal Chem 1(1):F4–F2. https://doi.org/10.1002/0471142913.faf0402s01 Lucho SR, Amaral MN, Milech C, Ferrer MÁ, Calderón AA, Bianchi VJ, Braga EJB (2018) Elicitor-induced transcriptional changes of genes of the steviol glycoside biosynthesis pathway in Stevia rebaudiana Bertoni. J Plant Growth Reg 37:971–985. https://doi.org/10.1007/s00344-018-9795-x Mahajan M, Sharma S, Kumar P, Pal PK (2020) Foliar application of KNO3 modulates the biomass yield, nutrient uptake and accumulation of secondary metabolites of Stevia rebaudiana under saline conditions. Ind Crops Prod. https://doi.org/10.1016/j.indcrop.2020.112102 Mali AM, Chavan NS (2016) In vitro rapid regeneration through direct organogenesis and ex vitro establishment of Cucumis trigonus Roxb.—an underutilized pharmaceutically important cucurbit. Ind Crops Prod 83:48–54. https://doi.org/10.1016/j.indcrop.2015.12.036 Malik NAA, Kumar IS, Nadarajah K (2020) Elicitor and receptor molecules: orchestrators of plant defence and immunity. Int J Mol Sci. https://doi.org/10.3390/ijms21030963 Malik VS, Popkin BM, Bray GA, Després JP, Willett WC, Hu FB (2010) Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes: a meta-analysis. Diabetes Care 33(11):2477–2483. https://doi.org/10.2337/dc10-1079 Marcinek K, Krejpcio Z (2015) Stevia rebaudiana bertoni-chemical composition and functional properties. Acta Sci Pol Technol Aliment 14(2):145–152. https://doi.org/10.17306/J.AFS.16 Mathur S, Mehta P, Jajoo A, Bharti S (2011) Analysis of elevated temperature induced inhibition of Photosystem II using Chlorophyll fluorescence induction kinetics. Plant Biol 13(1):1–6. https://doi.org/10.1111/j.1438-8677.2009.00319.x Maxwell K, Johnson GN (2000) Chlorophyll fluorescence: a practical guide. J Exp Bot 51:659–668 Mazel A, Levine A (2002) Induction of glucosyltransferase transcription and activity during superoxide-dependent cell death in Arabidopsis plants. Plant Physiol Biochem 40(2):133–140. https://doi.org/10.1016/S0981-9428(01)01351-1 Meißner D, Albert A, Böttcher C, Strack D, Milkowski C (2008) The role of UDP-glucose: hydroxycinnamate glucosyltransferases in phenylpropanoid metabolism and the response to UV-B radiation in Arabidopsis thaliana. Planta 228(4):663–674. https://doi.org/10.1007/s00425-008-0768-3 Mitra A, Pal A (2007) In vitro regeneration of Stevia rebaudiana (Bert) from the nodal explant. J Plant Biochem Biotechnol 16(1):59–62. https://doi.org/10.1007/BF03321930 Modi A, Litoriya N, Prajapati V, Rafalia R, Narayanan S (2014) Transcriptional profiling of genes involved in steviol glycoside biosynthesis in Stevia rebaudiana Bertoni during plant hardening. Dev Dyn 243(9):1067–1073. https://doi.org/10.1002/dvdy.24157 Modi AR, Shukla YM, Litoriya NS, Patel NJ, Narayan S (2011) Effect of gibberellic acid foliar spray on growth parameters and stevioside content of ex vitro grown plants of Stevia rebaudiana Bertoni. Med Plants 3(2):157–160. https://doi.org/10.5958/j.0975-4261.3.2.025 Mohamed AA, Ceunen S, Geuns JM, Van den Ende W, De Ley M (2011) UDP-dependent glycosyltransferases involved in the biosynthesis of steviol glycosides. J Plant Physiol 168(10):1136–1141. https://doi.org/10.1016/j.jplph.2011.01.030 Nemeskéri E, Helyes L (2019) Physiological responses of selected vegetable crop species to water stress. Agronomy 9:447. https://doi.org/10.3390/agronomy9080447 Perrier JD, Mihalov JJ, Carlson SJ (2018) FDA regulatory approach to steviol glycosides. Food Chem Toxicol 122:132–142. https://doi.org/10.1016/j.fct.2018.09.062 Richardson AD, Duigan SP, Berlyn GP (2002) An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytol 153(1):185–194. https://doi.org/10.1046/j.0028-646X.2001.00289.x Salachna P, Grzeszczuk M, Meller E, Soból M (2018) Oligo-alginate with low molecular mass improves growth and physiological activity of Eucomis autumnalis under salinity stress. Molecules 23(4):812. https://doi.org/10.3390/molecules23040812 Sarbu C, Pop HF (2005) Principal component analysis versus fuzzy principal component analysis. A case study the quality of Danube water (1985e1996). Talanta 65:1215e1220. https://doi.org/10.1016/j.talanta.2004.08.047 Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3(6):1101–1108. https://doi.org/10.1038/nprot.2008.73 Short K, Warburton J, Roberts A (1987) In vitro hardening of cultured cauliflower and chrysanthemum plantlets to humidity. Acta Hortic 212:329–334. https://doi.org/10.17660/ActaHortic.1987.212.50 Sonneveld S, Verhagen BM, Tanenbaum ME (2020) Heterogeneity in mRNA translation. Trends Cell Biol 30(8):606–618. https://doi.org/10.1016/j.tcb.2020.04.008 Syvash OO, Mykhaylenko NF, Zolotareva EK (2018) Variation of chlorophyll a to b ratio at adaptation of plants to external factors. Visn Hark Nac Agrar Univ Ser Biol 3(45):49–73. https://doi.org/10.35550/vbio2018.03.049 Tadhani MB, Patel VH, Subhash R (2007) In vitro antioxidant activities of Stevia rebaudiana leaves and callus. J Food Comp Anal 20(3–4):323–329. https://doi.org/10.1016/j.jfca.2006.08.004 Thakur K, Ashrita SA, Kumar P, Kumar D, Warghat AR (2021) Steviol glycoside accumulation and expression profiling of biosynthetic pathway genes in elicited in vitro cultures of Stevia rebaudiana. In Vitro Cell Dev Biol Plant 57(2):214–224. https://doi.org/10.1007/s11627-020-10151-3 Tohge T, Nishiyama Y, Hirai MY, Yano M, Nakajima JI, Awazuhara M, Inoue E, Takahashi H, Goodenowe DB, Kitayama M, Noji M (2005) Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J 42(2):218–235. https://doi.org/10.1111/j.1365-313X.2005.02371.x Van Huylenbroeck JM, Piqueras A, Debergh PC (2000) The evolution of photosynthetic capacity and the antioxidant enzymatic system during acclimatization of micropropagated Calathea plants. Plant Sci 155(1):59–66. https://doi.org/10.1016/S0168-9452(00)00201-6 Vazquez-Hernandez C, Feregrino-Perez AA, Perez-Ramirez I, Ocampo-Velazquez RV, Rico-García E, Torres-Pacheco I, Guevara-Gonzalez RG (2019) Controlled elicitation increases steviol glycosides (SGs) content and gene expression-associated to biosynthesis of SGs in Stevia rebaudiana B. cv. Morita II. Ind Crops Prod 139:111479. https://doi.org/10.1016/j.indcrop.2019.111479 Vogt T, Jones P (2000) Glycosyltransferases in plant natural product synthesis: characterization of a supergene family. Trends Plant Sci 5(9):380–386. https://doi.org/10.1016/s1360-1385(00)01720-9 Williams LD, Burdock GA (2009) Genotoxicity studies on a high-purity rebaudioside: a preparation. Food Chem Toxicol 47(8):1831–1836. https://doi.org/10.1016/j.fct.2009.04.046 Yang Y, Huang S, Han Y, Yuan H, Gu C, Wang Z (2015) Environmental cues induce changes of steviol glycosides contents and transcription of corresponding biosynthetic genes in Stevia rebaudiana. Plant Physiol Biochem 86:174–180. https://doi.org/10.1016/j.plaphy.2014.12.004 Zhu M, Li FH, Shi ZS (2016) Morphological and photosynthetic response of waxy corn inbred line to waterlogging. Photosynthetica 54:636–640. https://doi.org/10.1007/s11099-016-0203-0