The Influence of Acetic Acid on the Properties of Microporous Metal–organic Framework MIL-88a at Microfluidic Conditions and room Temperature

P. V. Medvedev1, Vera V. Butova1, Mikhail A. Soldatov1, А. А. Кужаров1, А. Г. Федоренко2, Svetlana O. Shapovalova1, Olga A. Burachevskaya1, I. E. Gorban1, Alexander V. Soldatov1
1The Smart Materials Research Institute, Southern Federal University, Rostov-on-Don, Russia
2Academy of Biology and Biotechnologies, Southern Federal University, Rostov-on-Don, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

V. V. Butova, M. A. Soldatov, A. A. Guda, K. A. Lomachenko, and C. Lamberti, Russ. Chem. Rev. 85, 280 (2016). https://doi.org/10.1070/rcr4554

S. G. Khasevani and M. R. Gholami, Inorg. Chem. Commun. 102, 221 (2019). https://doi.org/10.1016/j.inoche.2019.01.039

D. J. Tranchemontagne, J. L. Mendoza-Cortes, M. O’Keeffe, and O. M. Yaghi, Chem. Soc. Rev. 38, 1257 (2009).

O. M. Yaghi, M. O’Keeffe, N. W. Ockwig, et al., Nature (London, U.K.) 423 (6941), 705 (2003). https://doi.org/10.1038/nature01650

L. Braglia, E. Borfecchia, L. Maddalena, et al., Catal. Today 283, 89 (2017). https://doi.org/10.1016/j.cattod.2016.02.039

A. L. Bugaev, A. A. Guda, K. A. Lomachenko, et al., Faraday Discuss. 208, 287 (2018). https://doi.org/10.1039/c7fd00224f

H. Furukawa and O. M. Yaghi, J. Am. Chem. Soc. 131, 8875 (2009). https://doi.org/10.1021/ja9015765

V. V. Butova, A. P. Budnyk, K. M. Charykov, et al., Inorg. Chem. 58, 1607 (2019). https://doi.org/10.1021/acs.inorgchem.8b03087

V. V. Butova, E. A. Bulanova, V. A. Polyakov, et al., Inorg. Chim. Acta 492, 18 (2019). https://doi.org/10.1016/j.ica.2019.04.011

V. V. Butova, V. A. Polyakov, E. A. Erofeeva, et al., Inorg. Chim. Acta 509, 119678 (2020). https://doi.org/10.1016/j.ica.2020.119678

A. C. McKinlay, R. E. Morris, P. Horcajada, et al., Angew. Chem. Int. Ed. 49, 6260 (2010). https://doi.org/10.1002/anie.201000048

P. Horcajada, R. Gref, T. Baati, et al., Chem. Rev. 112, 1232 (2012). https://doi.org/10.1021/cr200256v

P. Horcajada, T. Chalati, C. Serre, et al., Nat. Mater. 9, 172 (2010). https://doi.org/10.1038/nmat2608

R. Liu, T. Yu, Z. Shi, and Z. Y. Wang, Int. J. Nanomed. 11, 14 (2016). https://doi.org/10.2147/ijn.s100877

E. R. Parnham and R. E. Morris, Acc. Chem. Res. 40, 1005 (2007). https://doi.org/10.1021/ar700025k

P. Horcajada, C. Serre, M. Vallet-Regi, et al., Angew. Chem. Int. Ed. 45, 5974 (2006). https://doi.org/10.1002/anie.200601878

A. C. McKinlay, J. F. Eubank, S. Wuttke, et al., Chem. Mater. 25, 1592 (2013). https://doi.org/10.1021/cm304037x

R. Mejia-Ariza and J. Huskens, J. Mater. Chem. B 4, 1108 (2016). https://doi.org/10.1039/c5tb01949d

P. V. Medvedev, M. A. Soldatov, V. V. Shapovalov, et al., JETP Lett. 108, 318 (2018). https://doi.org/10.1134/s0021364018170083

C. Serre, F. Millange, S. Surble, and G. Ferey, Angew. Chem. Int. Ed. 43, 6286 (2004). https://doi.org/10.1002/anie.200454250

E. Ploetz, H. Engelke, U. Lachelt, and S. Wuttke, Adv. Funct. Mater. 30 (41), 77 (2020). https://doi.org/10.1002/adfm.201909062

L. Wang, Y. Y. Zhang, X. Li, et al., Sci Rep. 5, 12 (2015). https://doi.org/10.1038/srep14341

P. Hirschle, C. Hirschle, K. Boll, et al., Chem. Mater. 32, 2253 (2020). https://doi.org/10.1021/acs.chemmater.9b03662

F. Ke, G. Luo, P. R. Chen, et al., J. Porous Mater. 23, 1065 (2016). https://doi.org/10.1007/s10934-016-0164-5

T. Tsuruoka, S. Furukawa, Y. Takashima, et al., Angew. Chem. Int. Ed. 48, 4739 (2009). https://doi.org/10.1002/anie.200901177

V. V. Butova, A. P. Budnyk, A. A. Guda, et al., Cryst. Growth Des. 17, 5422 (2017). https://doi.org/10.1021/acs.cgd.7b00892

E. Bagherzadeh, S. M. Zebarjad, and H. R. M. Hosseini, Eur. J. Inorg. Chem., No. 18, 1909 (2018). https://doi.org/10.1002/ejic.201800056

E. A. Flugel, A. Ranft, F. Haase, and B. V. Lotsch, J. Mater. Chem. 22, 10119 (2012). https://doi.org/10.1039/c2jm15675j

M. Faustini, J. Kim, G. Y. Jeong, et al., J. Am. Chem. Soc. 135, 14619 (2013). https://doi.org/10.1021/ja4039642

G. Y. Jeong, R. Ricco, K. Liang, et al., Chem. Mater. 27, 7903 (2015). https://doi.org/10.1021/acs.chemmater.5b02847

K. Y. A. Lin and S. Y. Chen, RSC Adv. 5, 43885 (2015). https://doi.org/10.1039/c5ra05705a

C. Serre, C. Mellot-Draznieks, S. Surble, et al., Science (Washington, DC, U. S.) 315 (5820), 1828 (2007). https://doi.org/10.1126/science.1137975

Y. Wang, X. Guo, Z. Wang, et al., J. Mater. Chem. A 5, 25562 (2017). https://doi.org/10.1039/c7ta08314a

L. Valenzano, B. Civalleri, S. Chavan, et al., Chem. Mater. 23, 1700 (2011). https://doi.org/10.1021/cm1022882

H. Wu, M. D. Ma, W. Z. Gai, et al., Environ. Sci. Pollut. Res. 25, 27196 (2018). https://doi.org/10.1007/s11356-018-2751-2

D. Y. Yu, L. B. Li, M. Wu, and J. C. Crittenden, Appl. Catal. B 251, 66 (2019). https://doi.org/10.1016/j.apcatb.2019.03.050

Y. Zhang, J. B. Zhou, X. Chen, et al., Chem. Eng. J. 369, 745 (2019). https://doi.org/10.1016/j.cej.2019.03.108

Z. W. Shao, D. F. Zhang, H. Li, et al., Sep. Purif. Technol. 220, 16 (2019). https://doi.org/10.1016/j.seppur.2019.03.040

J. Amaro-Gahete, R. Klee, D. Esquivel, et al., Ultrason. Sonochem. 50, 59 (2019). https://doi.org/10.1016/j.ultsonch.2018.08.027