The Indentation Size Effect: A Critical Examination of Experimental Observations and Mechanistic Interpretations

Annual Review of Materials Research - Tập 40 Số 1 - Trang 271-292 - 2010
George M. Pharr1,2, Erik G. Herbert1, Yanfei Gao3,1
1Department of Materials Science & Engineering, University of Tennessee, Knoxville, Tennessee 37996-2200;, ,
2Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
3Computer Science & Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831

Tóm tắt

The indentation size effect is one of several size effects on strength for which “smaller is stronger.” Through use of geometrically self-similar indenters such as cones and pyramids, the size effect is manifested as an increase in hardness with decreasing depth of penetration and becomes important at depths of less than approximately 1 μm. For spherical indenters, the diameter of the sphere is the most important length scale; spheres with diameters of less than approximately 100 μm produce measurably higher hardnesses. We critically review experimental observations of the size effect, focusing on the behavior of crystalline metals, and examine prevailing ideas on the mechanisms responsible for the effect in light of recent experimental observations and computer simulations.

Từ khóa


Tài liệu tham khảo

Mott BW, 1957, Microindentation Hardness Testing

10.1179/095066059790421746

10.1098/rspa.1970.0122

Upit GP, 1973, The Science of Hardness Testing and Its Research Applications, 10, 135

Chen CC, 1973, The Science of Hardness Testing and Its Research Applications, 21, 274

Tabor D, 1986, Microindentation Techniques in Materials Science and Engineering. ASTM STP 889, 129

Kiener D, 2009, J. Met., 61, 14

10.1115/1.1469004

10.3139/146.030787

10.1179/175355508X376843

10.1016/S0254-0584(99)00216-3

10.1080/09500838908206356

10.1007/BF00400874

10.1557/jmr.2004.19.1.137

10.1080/01418618308234914

10.1557/JMR.1989.0094

10.1557/JMR.1992.1564

10.1016/0956-7151(93)90100-7

10.1103/PhysRevLett.71.3319

10.1557/JMR.1995.0853

10.1016/1359-6462(95)00524-2

10.1557/JMR.1998.0185

10.1016/S1359-6462(00)00598-4

10.1016/j.scriptamat.2005.02.009

10.1557/jmr.2009.0137

10.1557/jmr.2009.0096

10.1016/j.actamat.2007.08.044

Petzow G, 1999, Metallographic Etching: Techniques for Metallography, Ceramography, and Plastography, 2

10.1016/S0022-5096(97)00086-0

10.1016/j.ijplas.2003.08.002

10.1016/S0022-5096(98)00103-3

10.1016/S0022-5096(99)00022-8

10.1016/S0022-5096(01)00037-0

10.1016/S0022-5096(02)00032-7

10.1016/0956-7151(94)90502-9

10.1016/S0022-5096(01)00049-7

10.1016/j.jmps.2003.11.002

10.1016/0022-5096(93)90072-N

10.1016/S0022-5096(01)00104-1

10.1016/S1359-6454(99)00020-8

10.1016/S0022-5096(01)00103-X

Tabor D, 1951, The Hardness of Metals

10.1080/01418619908212037

10.1088/0022-3727/41/7/074005

10.1016/j.ijplas.2005.07.008

10.1016/j.jmps.2006.02.002

10.1016/j.scriptamat.2004.05.034

10.1557/jmr.2009.0131

10.1016/j.scriptamat.2008.06.003

10.1016/j.actamat.2007.08.001

10.1016/S1359-6454(02)00175-1

10.1016/S0022-5096(02)00033-9

10.1080/10426910601063410

10.1016/j.actamat.2006.01.036

10.1016/j.actamat.2008.11.015

10.1557/jmr.2004.19.1.66

10.1115/1.2884336

10.1080/14786430600943930

10.1063/1.2966297

10.1016/j.actamat.2005.12.014

10.1016/j.actamat.2008.09.039

10.1016/j.actamat.2006.02.024

10.1088/0022-3727/41/7/074007

10.1080/01418619508236252

10.1016/S1359-6454(02)00100-3

10.1016/j.scriptamat.2003.11.043

10.1016/j.scriptamat.2007.09.055

10.1016/j.msea.2004.05.037

10.1007/s00466-003-0531-3

10.1016/j.actamat.2007.01.021

10.1016/j.msea.2005.01.065

10.1016/j.msea.2005.01.074

10.1016/j.jmps.2006.07.004

10.1557/jmr.2007.0090

10.1016/j.jmps.2006.09.009

10.1016/S0921-5093(03)00563-X

10.1016/j.actamat.2007.02.006

10.1557/jmr.2004.19.1.3

10.1016/j.ijsolstr.2004.02.033

10.1016/S0040-6090(03)01102-7

10.1080/14786430600825103