The Icelandic volcanic aeolian environment: Processes and impacts — A review
Tài liệu tham khảo
Agustsson, 2012, The bimodal downslope windstorms at Kvísker, Meteorol. Atmos. Phys., 116, 27, 10.1007/s00703-010-0075-y
Alho, 2003, Land cover characteristics in NE Iceland with special reference to jökulhlaup geomorphology, Geogr. Ann. A, 85, 213, 10.1111/j.0435-3676.2003.00201.x
Alho, 2005, Reconstruction of the largest Holocene jökulhlaup within Jökulsá á Fjöllum, NE Iceland, Quat. Sci. Rev., 24, 2319, 10.1016/j.quascirev.2004.11.021
Andersen, 2008, Size distribution and total number concentration of ultrafine and accumulation mode particles and hospital admissions in children and the elderly in Copenhagen, Denmark, Occup. Environ. Med., 65, 458, 10.1136/oem.2007.033290
Arnalds, O., 1992. Pathways of aeolian sand-drift in Northeast Iceland (Sandleiðir á Norðausturlandi). In: Græðum Ísland (Icelandic SCS Yearbook) IV, Soil Conservation Service of Iceland, pp. 145–149 (in Icelandic).
Arnalds, 2010, Dust sources and deposition of aeolian materials in Iceland, Icelandic Agric. Sci., 23, 3
Arnalds, 2013, The influence of volcanic tephra (ash) on ecosystems, Adv. Agron., 121, 331, 10.1016/B978-0-12-407685-3.00006-2
Arnalds, 2015, 10.1007/978-94-017-9621-7
Arnalds, 2001, Andisols of deserts in Iceland, Soil Sci. Soc. Am. J., 65, 1778, 10.2136/sssaj2001.1778
Arnalds, O., Thorarinsdottir, E.F., Metusalemsson, S., Jonsson, A., Gretarsson, E., Arnason, A., 2001a. Soil erosion in Iceland. Soil Conservation Service and Agricultural Research Institute, Reykjavik (original edition in Icelandic 1997).
Arnalds, 2001, Sandy deserts of Iceland: an overview, J. Arid Environ., 47, 359, 10.1006/jare.2000.0680
Arnalds, 2012, Determination of aeolian transport rates of volcanic soils in Iceland, Geomorphology, 167–168, 4, 10.1016/j.geomorph.2011.10.039
Arnalds, 2013, An extreme wind erosion event of the fresh Eyjafjallajökull 2010 volcanic ash, Nat. Sci. Rep., 3, 1257, 10.1038/srep01257
Arnalds, 2014, Quantification of iron-rich volcanogenic dust emissions and deposition over ocean from Icelandic dust sources, Biogeosciences, 11, 6623, 10.5194/bg-11-6623-2014
Baddock, 2014, A visibility and total suspended dust relationship, Atmos. Environ., 89, 329, 10.1016/j.atmosenv.2014.02.038
Baratoux, 2011, Volcanic sands of Iceland – diverse origins of aeolian sand deposits revealed at Dyngjusandur and Lambahraun, Earth Surf. Proc. Land., 36, 1789, 10.1002/esp.2201
Bateman, 2013, Aeolian processes in periglacial environments, vol. 8, 416
Baynes, 2015, Erosion during extreme flood events dominates Holocene canyon evolution in northeast Iceland, PNAS, 112, 2335, 10.1073/pnas.1415443112
Björnsson, H., 2009. Jöklar á Íslandi (Icelandic Glaciers). Opna, Reykjavik, Iceland, p. 479 (in Icelandic).
Björnsson, 2008, Icelandic glaciers, Jökull, 58, 365, 10.33799/jokull2008.58.365
Blechschmidt, 2012, Aircraft-based observations and high-resolution simulations of an Icelandic dust storm, Atmos. Chem. Phys., 12, 10649, 10.5194/acp-12-10649-2012
Bond, 2013, Bounding the role of black carbon in the climate system: a scientific assessment, J. Geophys. Res. Atmos., 118, 5380, 10.1002/jgrd.50171
Brandt, 2011, A controlled snowmaking experiment testing the relation between black carbon content and reduction of snow albedo, J. Geophys. Res., 116, D08109, 10.1029/2010JD015330
Bryant, 2013, Recent advances in our understanding of dust source emission processes, Prog. Phys. Geogr., 37, 397, 10.1177/0309133313479391
Bullard, 2013, Contemporary glacigenic inputs to the dust cycle, Earth Surf. Proc. Land., 38, 71, 10.1002/esp.3315
Carlsen, 2015, Emergency hospital visits in association with volcanic ash, dust storms and other sources of ambient particles: a time-series study in Reykjavík, Iceland, Int. J. Environ. Res. Public Health, 12, 4047, 10.3390/ijerph120404047
Carrivick, 2013, Discussion of ‘Field evidence and hyrdaulic modeling of a large Holcene jökulhlaup at Jökulsá á Fjöllum channel, Iceland’ by Douglas Howard, Sheryl Luzzadder-Beach and Timothy Beach, 2012, Geomorphology, 201, 512, 10.1016/j.geomorph.2012.10.024
Clark, 1990, High spectral resolution reflectance spectroscopy of minerals, J. Geophys. Res., 95, 12653, 10.1029/JB095iB08p12653
Crofts, 2011
Crusius, 2011, Glacial flour dust storms in the Gulf of Alaska: hydrologic and meteorological controls and their importance as a source of bioavailable iron, Geophys. Res. Lett., 38, L06602, 10.1029/2010GL046573
Dagsson-Waldhauserova, 2013, Long-term frequency and characteristics of dust storm events in Northeastern Iceland (1949–2011), Atmos. Environ., 77, 10.1016/j.atmosenv.2013.04.075
Dagsson-Waldhauserova, 2014, Long-term variability of dust events in Iceland, Atmos. Chem. Phys., 14, 13411, 10.5194/acp-14-13411-2014
Dagsson-Waldhauserova, 2014, Physical properties of suspended dust during moist and low-wind conditions in Iceland, Icelandic Agric. Sci., 27, 25
Dagsson-Waldhauserova, 2015, Snow-dust storm: a case study from Iceland, March 7th 2013, Aeol. Res., 16, 69, 10.1016/j.aeolia.2014.11.001
di Mauro, 2015, Mineral dust impact on snow radiative properties in the European Alps combining ground, UAV and satellite observations, J. Geophys. Res. Atmospheres, 120, 6080, 10.1002/2015JD023287
Donaldson, 2006, Testing new particles, 163
Donarummo, 2002, Sun/dust correlations and volcanic interference, Geophys. Res. Lett., 29, 75-1, 10.1029/2002GL014858
Drab, 2002, Mineral particles content in recent snow at Summit (Greenland), Atmos. Environ., 36, 5365, 10.1016/S1352-2310(02)00470-3
Edgett, 1993, Volcaniclastic aeolian dunes: terrestrial examples and application to Martian sands, J. Arid Environ., 25, 271, 10.1006/jare.1993.1061
Einarsson, 1984, Climate of Iceland, vol. 15, 673
Ekström, 2004, Australian dust storms: temporal trends and relationships with synoptic pressure distributions (1960–99), Int. J. Climatol., 24, 1581, 10.1002/joc.1072
Eliasson, 2007, Large hazardous floods as translatory waves, Environ. Model. Software, 22, 1392, 10.1016/j.envsoft.2006.09.007
Fryrear, 1986, A field dust sampler, J. Soil Water Conserv., 41, 117-12
Geirsdóttir, 2009, Holocene and latest Pleistocene climate and glacier fluctuations in Iceland, Quat. Sci. Rev., 28, 2107, 10.1016/j.quascirev.2009.03.013
Gillies, 2013, Frequency, magnitude, and characteristics of aeolian sediment transport: McMurdo Dry Valleys, Antarctica, J. Geophys. Res., 118, 461, 10.1002/jgrf.20007
Gillette, 1997, Large-scale variability of wind erosion mass flux rates at Owens Lake 1. Vertical profiles of horizontal mass fluxes of wind-eroded particles with diameter greater than 50μm, J. Geophys. Res., 102, 977
Gisladottir, F.O., 2000. Environmental change and eolian processes south of the Langjökull Glacier (MSc thesis). University of Iceland (in Icelandic).
Gisladottir, 2005, The effect of landscape and retreating glaciers on wind erosion in South Iceland, Land Degrad. Dev., 16, 177, 10.1002/ldr.645
Gisladottir, F.O., Brink, S, H., Arnalds, O., 2014. Nytjaland (Icelandic Farmland Database). Agricultural University of Iceland Report 54, In Icelandic, English summary.
Gislason, 2008, Weathering in Iceland, Jökull, 58, 387, 10.33799/jokull2008.58.387
Grousset, 2003, Case study of a Chinese dust plume reaching the French Alps, Geophys. Res. Lett., 30, 1277, 10.1029/2002GL016833
Gudmundsson, 2011, Respiratory health effects of volcanic ash with special reference to Iceland. A review, Clin. Respirat. J., 2011
Gudmundsson, 2008, Volcanic hazards in Iceland, Jökull, 58, 251, 10.33799/jokull2008.58.251
Gunnarsson, 2015, Ecosystem recharge by volcanic dust drives broad-scale variation in bird abundance, Ecol. Evol., 5, 2386, 10.1002/ece3.1523
Hadley, 2012, Black-carbon reduction of snow albedo, Nat. Clim. Change, 2, 437, 10.1038/nclimate1433
Hannesdottir, 2014, Variations of southeast Vatnajökull ice cap (Iceland) 1650–1900 and reconstruction of the glacier surface geometry at the Little Ice Age maximum, Geogr. Ann.: Series A Phys. Geogr., 2, 3
Horwell, 2013, Physicochemical and toxicological profiling of ash from the 2010 and 2011 eruptions of Eyjafjallajökull and Grímsvötn volcanoes, Iceland using a rapid respiratory hazard assessment protocol, Environ. Res., 127, 63, 10.1016/j.envres.2013.08.011
Hugenholtz, 2010, Rates and environmental controls of aeolian dust accumulation, Athabasca River Valley, Canadian Rocky Mountains, Geomorphology, 121, 274, 10.1016/j.geomorph.2010.04.024
Husar, 2004, Transport of dust: historical and recent observational evidence, vol. 4, 277
Hyslop, 2009, Impaired visibility: the air pollution people see, Atmos. Environ., 43, 182, 10.1016/j.atmosenv.2008.09.067
IPCC, 2013. Climate change 2013: The physical science basis. In: Working Group I Contribution to the IPCC 5th Assessment Report – Changes to the Underlying Scientific/Technical Assessment‖ (IPCC-XXVI/Doc.4). URL: http://www.ipcc.ch/report/ar5/wg1/#.UlvUNVPfShM (accessed Sep 26, 2015).
Jamalizadeh, 2008, Dust storm prediction using ANNs technique (a case study: Zabol city), Proc. World Acad. Sci. Eng. Technol., 33, 529
Jonassen, 2014, Impact of surface characteristics on flow over a mesoscale mountain, Quart. J. Roy. Meteorol. Soc., 140, 2330, 10.1002/qj.2302
Jonsson, S.A.J., Benediktsson, I.Ö., Ingolfsson, O., Schomacke, A., Bergsdottir, H.L., Jacobson, W.R., Linderson, H., in press. Submarginal drumlin formation and late Holocene history of Fláajökull, southeast Iceland. Ann. Glaciol., in press.
Kirkbride, 2006, Radiocarbon dating of mid-Holocene megaflood deposits in the Jökulsá á Fjöllum, Iceland, Holocene, 16, 605, 10.1191/0959683606hl956rr
Kjær, 2004, Architecture and sedimentation of outwash fans in front of the Mýrdalsjökull ice cap, Iceland, Sediment. Geol., 172, 139, 10.1016/j.sedgeo.2004.08.002
Krüger, 1997, Development of minor outwash fans at Kötlujökull, Iceland, Quat. Sci. Rev., 16, 649, 10.1016/S0277-3791(97)00013-9
Lancaster, 2010, Sand transport by wind on complex surfaces. Field studies in the McMurdo dry valleys, Antarctica, J. Geophys. Res., 115, 10.1029/2009JF001408
Larsen, 2000, Holocene eruptions within the Katla volcanic system, south Iceland. Characteristics and environmental impact, Jökull, 49, 1, 10.33799/jokull2000.49.001
Larsen, 2008, Holocene tephra archives and tephrochronology in Iceland – a brief overview, Jökull, 58, 229, 10.33799/jokull2008.58.229
Leadbetter, 2012, Modeling the resuspension of ash deposited during the eruption of Eyjafjallajökull in spring 2010, J. Geophys. Res., 117, D00U10, 10.1029/2011JD016802
Liu, 2014, Ash mists and brown snow: remobilization of volcanic ash from recent Icelandic eruptions, J. Geophys. Res. Atmos., 119, 10.1002/2014JD021598
Mangold, 2011, Segregation of olivine grains in volcanic sands in Iceland and implications for Mars, Earth Planet. Sci. Lett., 310, 233, 10.1016/j.epsl.2011.07.025
Meinander, 2014, Brief communication: light-absorbing impurities can reduce the density of melting snow, Cryosphere, 8, 991, 10.5194/tc-8-991-2014
Monick, 2013, Effects of Eyjafjallajökull volcanic ash on innate immune system responses and bacterial growth in vitro, Environ. Health Perspect., 121, 691, 10.1289/ehp.1206004
Morman, 2013, The role of airborne mineral dusts in human disease, Aeol. Res., 9, 203, 10.1016/j.aeolia.2012.12.001
Mountney, 2004, Sedimentalogy of cold-climate aeolian sandsheet deposits in the Askja region of northeast Iceland, Sediment. Geol., 166, 223, 10.1016/j.sedgeo.2003.12.007
Natsagdorj, 2003, Analysis of dust storms observed in Mongolia during 1937–1999, Atmos. Environ., 37, 1401, 10.1016/S1352-2310(02)01023-3
Navratil, 2013, Volcanic ash particulate matter from the 2010 Eyjafjallajökull eruption in dust deposition at Prague, central Europe, Aeol. Res., 9, 191, 10.1016/j.aeolia.2012.12.002
Nickling, 1978, Eolian sediment transport during dust storms: Slims River Valley, Yukon Territory, Can. J. Earth Sci., 15, 1069, 10.1139/e78-114
Oladottir, 2011, Provenance of basaltic tephras from Vatnajökull subglacial volcanoes, Iceland as determined by major- and trace-element analyses, Holocene, 21, 1037, 10.1177/0959683611400456
Olafsson, 2004, The dust storm weather Oktober 5th, 2004 (Sandfoksveðrið 5. október 2004), Náttúrufræðingurinn, 72, 93
Olafsson, 2007, The weather and climate of Iceland, Meteorol. Z., 16, 5, 10.1127/0941-2948/2007/0185
Orwin, 2010, A framework for characterizing sediment fluxes from source to sink in cold environments, Geogr. Ann., 92 A, 155, 10.1111/j.1468-0459.2010.00387.x
Ovadnevaite, 2009, Volcanic sulfate and arctic dust plumes over the North Atlantic Ocean, Atmos. Environ., 43, 4968, 10.1016/j.atmosenv.2009.07.007
Painter, 2007, Impact of disturbed desert soils on duration of mountain snow cover, Geophys. Res. Lett., 34, L12502, 10.1029/2007GL030284
Painter, 2012, Dust radiative forcing in snow of the Upper Colorado River Basin: Part I. A 6 year record of energy balance, radiation, and dust concentrations, Water Resour. Res., 48, W07521, 10.1029/2012WR011985
Peltoniemi, 2015, Soot on snow experiment: bidirectional reflectance factor measurements of contaminated snow, Cryosphere, 9, 1, 10.5194/tc-9-2323-2015
Perez, 2008, Coarse particles from Saharan dust and daily mortality, Epidemiology, 19, 800, 10.1097/EDE.0b013e31818131cf
Prospero, 2012, High-latitude dust over the North Atlantic: inputs from Icelandic proglacial dust storms, Science, 335, 1078, 10.1126/science.1217447
Qian, 2002, Variations of the dust storm in China and its climatic control, J. Clim., 15, 1216, 10.1175/1520-0442(2002)015<1216:VOTDSI>2.0.CO;2
Renard, 2015, LOAC: a small aerosol optical counter/sizer for ground-based and balloon measurements of the size distribution and nature of atmospheric particles – Part 1: principle of measurements and instrument evaluation, Atmos. Meas. Tech. Discuss., 8, 1203, 10.5194/amtd-8-1203-2015
Renard, 2015, LOAC: a small aerosol optical counter/sizer for ground-based and balloon measurements of the size distribution and nature of atmospheric particles – Part 2: first results from balloon and unmanned aerial vehicle flights, Atmos. Meas. Tech. Discuss., 8, 10057, 10.5194/amtd-8-10057-2015
Rodolfo, 2000, The hazards from lahars and jökulhlaups, 957
Russel, 2001, Glacier surging as a control on the development of proglacial, fluvial landforms and deposits, Skeiðarársandur, Iceland, Global Planet. Change, 28, 163, 10.1016/S0921-8181(00)00071-0
Russell, 2005, Icelandic jökulhlaup impacts: Implications for ice-sheet hydrology, sediment transfer and geomorphology, Geomorphology, 75, 33, 10.1016/j.geomorph.2005.05.018
Sigbjarnarson, 1967, The changing level of Hagavatn and glacial recession in this century, Jökull, 17, 263, 10.33799/jokull1967.17.263
Sigurdardottir, 2015, Measurements of volcanic aerosols during the Holuhraun eruption in Iceland, Geophys. Res. Abstracts, 17
Sigurjonsson, H., Gisladottir, F., Arnalds, O., 1999. Measurements of eolian processes on sandy surfaces in Iceland. Rala Report 201, Agricultural Research Institute, Reykjavik, Iceland.
Steenburgh, 2012, Episodic dust events of Utah’s Wasatch Front and adjoining region, J. Appl. Meteorol. Climatol., 51, 1654, 10.1175/JAMC-D-12-07.1
Stout, 1989, Performance of a windblown-particle sampler, Trans. ASAE, 32, 2041, 10.13031/2013.31260
Striberger, 2012, The sediments of Lake Lögurinn – a unique proxy record of Holocene glacial meltwater variability in eastern Iceland, Quat. Sci. Rev., 38, 76, 10.1016/j.quascirev.2012.02.001
Thorarinsdottir, 2012, Wind erosion of volcanic materials in the Hekla area, South Iceland, Aeol. Res., 4, 39, 10.1016/j.aeolia.2011.12.006
Thordarson, 2008, Postglacial volcanism in Iceland, Jökull, 58, 197
Thorsteinsson, 2012
Thorsteinsson, 2011, Dust storm contributions to airborne particulate matter in Reykjavík, Iceland, Atmos. Environ., 45, 5924, 10.1016/j.atmosenv.2011.05.023
Thorsteinsson, 2012, High levels of particulate matter in Iceland due to direct ash emissions by the Eyjafjallajökull eruption and resuspension of deposited ash, J. Geophys. Res., 117, B00C05, 10.1029/2011JB008756
UST, 2015. Air quality in Iceland. Umhverfisstofnun [The Environment Agency of Iceland]. URL: <http://ust.is/the-environment-agency-of-iceland/> (accessed Sep 26, 2015).
Vogel, A., Weber, K., Fischer, Ch., Pohl, T., von Löwis, S., Moser, H.M., 2012. Ground based stationary and mobile in situ measurements of volcanic ash particles during and after the 2011 Grímsvötn volcano eruption on Iceland. Abstract VA-3 presented at 2012 Volcanism and the Atmosphere conference, AGU, Selfoss, Iceland, 10–15 Jun., pp. 71–72.
Wang, 2015, Mapping the global dust storm records: review of dust data sources in supporting modeling/climate study, Curr. Pollut. Rep., 6, 1
Weast, 1966
Weber, 2006, Flow characteristics and particle mass and number concentration variability within a busy urban street canyon, Atmos. Environ., 40, 7565, 10.1016/j.atmosenv.2006.07.002
WHO, 2005. The World Health Organisation – Air Quality Guidelines Global Update 2005. Report on a Working Group meeting, Bonn, Germany 18–20 October 2005.
Wilson, 2011, Ash storms: impacts of wind-remobilised volcanic ash on rural communities and agriculture following the 1991 Hudson eruption, southern Patagonia, Chile, Bull. Volcanol., 73, 223, 10.1007/s00445-010-0396-1
Yoshida, A., Moteki, M., Ohata, S., Mori, T., Tada, R., Dagsson-Waldhauserova, P., Kondo, Y., in press. Detections of light-absorbing iron oxide particles using a single-particle soot photometer. Aerosol Sci. Technol.