The IKK NF-κB system: a treasure trove for drug development

Nature Reviews Drug Discovery - Tập 3 Số 1 - Trang 17-26 - 2004
Michael Karin1, Yumi Yamamoto2, Q May Wang2
1Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, USA
2Lilly Research Laboratories, Eli Lilly and Company Indianapolis USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ghosh, S., May, M. J. & Kopp, E. B. NF-κB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 16, 225–260 (1998).

Karin, M. & Ben-Neriah, Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu. Rev. Immunol. 18, 621–663 (2000).

Solan, N. J., Miyoshi, H., Carmona, E. M., Bren, G. D. & Paya, C. V. RelB cellular regulation and transcriptional activity are regulated by p100. J. Biol. Chem. 277, 1405–1418 (2002).

Ghosh, S. & Karin, M. Missing pieces in the NF-κB puzzle. Cell 109, S81–S96 (2002).

Rothwarf, D. M., Zandi, E., Natoli, G. & Karin, M. IKK-γ is an essential regulatory subunit of the IκB kinase complex. Nature 395, 297–300 (1998).

Makris, C. et al. Female mice heterozygous for IKK-γ/NEMO deficiencies develop a dermatopathy similar to the human X-linked disorder incontinentia pigmenti. Mol. Cell. 5, 969–979 (2000).

Dejardin, E. et al. The lymphotoxin-β receptor induces different patterns of gene expression via two NF-κB pathways. Immunity 17, 525–535 (2002).

Li, Q., Van Antwerp, D., Mercurio, F., Lee, K. F. & Verma, I. M. Severe liver degeneration in mice lacking the IκB kinase 2 gene. Science 284, 321–325 (1999).

Li, Z. W. et al. The IKKβ subunit of IκB kinase (IKK) is essential for nuclear factor κB activation and prevention of apoptosis. J. Exp. Med. 189, 1839–1845 (1999).

Chen, L. W. et al. The two faces of IKK and NF-κB inhibition: prevention of systemic inflammation but increased local injury following intestinal ischemia-reperfusion. Nature Med. 9, 575–581 (2003). This paper demonstrates that the IKK-β ablation is a driving force for the initiation and maintenance of acute systemic inflammation.

Hu, Y. et al. Abnormal morphogenesis but intact IKK activation in mice lacking the IKKα subunit of IκB kinase. Science 284, 316–320 (1999).

Hu, Y. et al. IKKα controls formation of the epidermis independently of NF-κB. Nature 410, 710–714 (2001).

Cao, Y. et al. IKKα provides an essential link between RANK signaling and cyclin D1 expression during mammary gland development. Cell 107, 763–775 (2001).

Yamamoto, Y., Verma, U. N., Prajapati, S., Kwak, Y. T. & Gaynor, R. B. Histone H3 phosphorylation by IKK-α is critical for cytokine-induced gene expression. Nature 423, 655–659 (2003).

Israel, A. Signal transduction: a regulator branches out. Nature 423, 596–597 (2003).

Senftleben, U. et al. Activation by IKKα of a second, evolutionary conserved, NF-κB signaling pathway. Science 293, 1495–1499 (2001).

Karin, M. & Lin, A. NF-κB at the crossroads of life and death. Nature Immunol. 3, 221–227 (2002).

Barnes, P. J. & Karin, M. Nuclear factor-κB — a pivotal transcription factor in chronic inflammatory diseases. N. Engl. J. Med. 336, 1066–1071 (1997).

Neurath, M. F. et al. Cytokine gene transcription by NF-κB family members in patients with inflammatory bowel disease. Ann. NY Acad. Sci. 859, 149–159 (1998).

Luque, I. & Gelinas, C. Rel/NF-κB and IκB factors in oncogenesis. Semin. Cancer. Biol. 8, 103–111 (1997).

Gilmore, T. D., Koedood, M., Piffat, K. A. & White, D. W. Rel/NF-κB/IκB proteins and cancer. Oncogene 13, 1367–1378 (1996).

Haefner, B. NF-κB: arresting a major culprit in cancer. Drug Discov. Today 7, 653–663 (2002).

Alkalay, I. et al. Stimulation-dependent IκB-α phosphorylation marks the NF-κB inhibitor for degradation via the ubiquitin–proteasome pathway. Proc. Natl Acad. Sci. USA 92, 10599–10603 (1995).

Xiao, G. et al. Retroviral oncoprotein Tax induces processing of NF-κB2/p100 in T cells: evidence for the involvement of IKKα. EMBO J. 20, 6805–6815 (2001).

Lenz, H. J. Clinical update: proteasome inhibitors in solid tumors. Cancer Treat Rev. 29 (Suppl. 1), 41–48 (2003).

Kitagawa, M. et al. An F-box protein, FWD1, mediates ubiquitin-dependent proteolysis of β-catenin. EMBO J. 18, 2401–2410 (1999).

Winston, J. T. et al. The SCF-βTRCP ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IκBβ and B-catenin and stimulates IκBα ubiquitination in vitro. Genes Dev. 13, 270–283 (1999).

Fuchs, S. Y., Chen, A., Xiong, Y., Pan, Z. Q. & Ronai, Z. HOS, a human homolog of Slimb, forms an SCF complex with Skp1 and Cullin1 and targets the phosphorylation-dependent degradation of IκB and β-catenin. Oncogene 18, 2039–2046 (1999).

Rubinfeld, B. et al. Stabilization of β-catenin by genetic defects in melanoma cell lines. Science 275, 1790–1792 (1997).

Morin, P. J. et al. Activation of β-catenin-Tcf signaling in colon cancer by mutations in β-catenin or APC. Science 275, 1787–1790 (1997).

Kopp, E. & Ghosh, S. Inhibition of NF-κB by sodium salicylate and aspirin. Science 265, 956–959 (1994).

Pierce, J. W., Read, M. A., Ding, H., Luscinskas, F. W. & Collins, T. Salicylates inhibit IκBα phosphorylation, endothelial-leukocyte adhesion molecule expression, and neutrophil transmigration. J. Immunol. 156, 3961–3969 (1996).

Yin, M. -J., Yamamoto, Y. & Gaynor, R. B. The anti-inflammatory agents aspirin and salicylate inhibit the activity of IκB kinase-β. Nature 396, 77–80 (1998). This is the first study to provide evidence that IKK-β is a potential target for NF-κB inhibition.

Yamamoto, Y., Yin, M. -J., Lin, K. -M. & Gaynor, R. B. Sulindac inhibits activation of the NF-κB pathway. J. Biol. Chem. 274, 27307–27314 (1999).

Berman, K. S. et al. Sulindac enhances tumor necrosis factor-α-mediated apoptosis of lung cancer cell lines by inhibition of nuclear factor-κB. Clin. Cancer Res. 8, 354–360 (2002).

Yasui, H., Adachi, M. & Imai, K. Combination of tumor necrosis factor-α with sulindac augments its apoptotic potential and suppresses tumor growth of human carcinoma cells in nude mice. Cancer 97, 1412–1420 (2003).

Wahl, C., Liptay, S., Adler, G. & Schmid, R. M. Sulfasalazine: a potent and specific inhibitor of NF-κB. J. Clin. Invest. 101, 1163–1174 (1997).

Yan, F. & Polk, D. B. Aminosalicylic acid inhibits IκB kinase-α phosphorylation of IκBα in mouse intestinal epithelial cells. J. Biol. Chem. 274, 36631–36636 (1999).

Egan, L. J. et al. Inhibition of interleukin-1-stimulated NF-κB RelA/p65 phosphorylation by mesalamine is accompanied by decreased transcriptional activity. J. Biol. Chem. 274, 26448–26453 (1999).

Dredge, K., Dalgleish, A. G. & Marriott, J. B. Thalidomide analogs as emerging anti-cancer drugs. Anticancer Drugs 14, 331–335 (2003).

Keifer, J. A., Guttridge, D. C., Ashburner, B. P. & Baldwin, A. S. Jr. Inhibition of NF-κB activity by thalidomide through suppression of IκB kinase activity. J. Biol. Chem. 276, 22382–22387 (2001).

Majumdar, S., Lamothe, B. & Aggarwal, B. B. Thalidomide suppresses NF-κB activation induced by TNF and H2O2, but not that activated by ceramide, lipopolysaccharides, or phorbol ester. J. Immunol. 168, 2644–2651 (2002).

Mitsiades, N. et al. Apoptotic signaling induced by immunomodulatory thalidomide analogs in human multiple myeloma cells: therapeutic implications. Blood 99, 4525–4530 (2002).

Gilroy, D. W. et al. Inducible cyclooxygenase may have anti-inflammatory properties. Nature Med. 5, 698–701 (1999).

Ricote, M., Li, A. C., Willson, T. M., Kelly, C. J. & Glass, C. K. The peroxisome proliferator-activated receptor-γ is a negative regulator of macrophage activation. Nature 391, 79–82 (1998).

Rossi, A. et al. Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of IκB kinase. Nature 403, 103–108 (2000).

Straus, D. S. et al. 15-deoxy-Δ12,14-prostaglandin J2 inhibits multiple steps in the NF-κB signaling pathway. Proc. Natl Acad. Sci. USA 97, 4844–4849 (2000).

Lawrence, T., Gilroy, D. W., Colville-Nash, P. R. & Willoughby, D. A. Possible new role for NF-κB in the resolution of inflammation. Nature Med. 7, 1291–1297 (2001).

Bowie, A. G. & O'Neill, L. A. Vitamin C inhibits NF-κB activation by TNF via the activation of p38 mitogen-activated protein kinase. J. Immunol. 165, 7180–7188 (2000).

Carcamo, J. M., Pedraza, A., Borquez-Ojeda, O. & Golde, D. W. Vitamin C suppresses TNFα-induced NF-κB activation by inhibiting IκBα phosphorylation. Biochemistry 41, 12995–13002 (2002).

Tsai, S. H., Liang, Y. C., Lin-Shiau, S. Y. & Lin, J. K. Suppression of TNFα-mediated NF-κB activity by myricetin and other flavonoids through downregulating the activity of IKK in ECV304 cells. J. Cell Biochem. 74, 606–615 (1999).

Holmes-McNary, M. & Baldwin, A. S. Jr. Chemopreventive properties of trans-resveratrol are associated with inhibition of activation of the IκB kinase. Cancer Res. 60, 3477–3483 (2000).

Berlett, B. S. & Stadtman, E. R. Protein oxidation in aging, disease, and oxidative stress. J. Biol. Chem. 272, 20313–20316 (1997).

Hayakawa, M. et al. Evidence that reactive oxygen species do not mediate NF-κB activation. EMBO J. 22, 3356–3366 (2003).

Sakon, S. et al. NF-κB inhibits TNF-induced accumulation of ROS that mediate prolonged MAPK activation and necrotic cell death. EMBO J 22, 3898–3909 (2003).

Blackwell, T. S., Blackwell, T. R., Holden, E. P., Christman, B. W. & Christman, J. W. In vivo antioxidant treatment suppresses nuclear factor-κB activation and neutrophilic lung inflammation. J. Immunol. 157, 1630–1637 (1996).

Anest, V. et al. A nucleosomal function for IκB kinase-α in NF-κB-dependent gene expression. Nature 423, 659–663 (2003).

Signal Pharmaceuticals, Inc. Quinazoline analogs and related compounds and methods for treating inflammatory conditions. WO 199901441 (1999).

Leisten, J. C. et al. Identification of a disease modifying IKK2 inhibitor in rat adjuvant arthritis. Inflamm. Res. 51 (Suppl. 2), A25 (2002).

Palanki, M. S. et al. Structure–activity relationship studies of ethyl 2-[(3-methyl-2,5-dioxo(3-pyrrolinyl))amino]-4-(trifluoromethyl)pyrimidine-5-carboxylate: an inhibitor of AP-1 and NF-κB mediated gene expression. Bioorg. Med. Chem. Lett. 12, 2573–2577 (2002).

Aventis Pharma. Preparation of substituted β-carbolines as potential therapeutics in diseases associated with increased IκB kinase activity. WO 2001068648 (2001).

Castro, A. C. et al. Novel IKK inhibitors: β-carbolines. Bioorg. Med. Chem. Lett. 13, 2419–2422 (2003).

Hideshima, T. et al. NF-κB as a therapeutic target in multiple myeloma. J. Biol. Chem. 277, 16639–16647 (2003). This paper reports the use of small-molecule inhibitors of IKK-β to prevent NF-κB activation, and its thrapeutic role in inhibiting the growth of the haematological cancer multiple myeloma.

Bristol-Myers Squibb Co. Method of treating inflammatory and immune diseases using 4-amino substituted imidazoquinoxaline, benzopyrazoloquinazoline, benzoimidazoquinoxaline and benzoimidazoquinoline inhibitors of IκB kinase (IKK). WO 2002060386 (2002).

Burke, J. R. et al. BMS-345541 is a highly selective inhibitor of IκB kinase that binds at an allosteric site of the enzyme and blocks NF-κB-dependent transcription in mice. J. Biol. Chem. 278, 1450–1456 (2003).

McIntyre, K. W. et al. A highly selective inhibitor of IκB kinase, BMS-345541, blocks both joint inflammation and destruction in collagen-induced arthritis in mice. Arthritis Rheum. 48, 2652–2659 (2003).

Kishore, N. et al. A selective IKK-2 inhibitor blocks NF-κB-dependent gene expression in IL-1β stimulated synovial fibroblasts. J. Biol. Chem. 278, 32861–32871 (2003). References 65 and 67 focus on the therapeutic potential of small-molecule inhibitors of IKK-β for the treatment of inflammation. The molecule in reference 65 is an allosteric site inhibitor of IKK-β, whereas reference 67 reports the development of an ATP-competitive inhibitor of IKK-β.

Smithkline Beecham Corp. Preparation of 2-aminothiophene-3-carboxamides as NF-κB inhibitors. WO 2002030353 (2002).

SmithKline Beecham Corp. NF-κB inhibitors. WO 2003029242 (2003).

AstraZeneca. Preparation of ureido–carboxamido thiophene as inhibitors of IKK2 kinase. WO 2003010163 (2003).

AstraZeneca. Preparation of thiophenecarboxamides as inhibitors of the enzyme IKK-2. WO 2001058890 (2001).

Roshak, A. K. et al. A small molecule inhibitor of IκB kinase β (IKKβ) blocks inflammation and protects joint integrity in in vivo models of arthritis. Inflamm. Res. 51 (Suppl. 2), S4 (2002).

Bayer. Preparation of 2,4-diarylpyridines as IκB kinase β inhibitors useful as antiinflammatories. WO 2002044153 (2002).

Bayer, P paration of hydroxyarylpyridines with IκB kinase β (IKK) inhibiting activity. WO 2002024679 (2002).

Murata, T. et al. Discovery of novel and selective IKK-β serine-threonine protein kinase inhibitors. Part 1. Bioorg. Med. Chem. Lett. 13, 913–918 (2003).

Signal Pharmaceuticals, Inc. Preparation of anilinopyrimidines as IKK inhibitors. WO 2002046171 (2002).

Bayer. Preparation of optically active pyridooxazinones as antiinflammatory agents. WO 2003076447 (2003).

Aventis Pharma. Preparation of amino acid indolecarboxamides as modulators of NFκB activity. WO 2001030774 (2001).

Aventis Pharma. Preparation of benzimidazolecarboxylic acid amino acid amides as IκB kinase inhibitors. WO 2001000610 (2001).

Pharmacia Corp. Preparation of pyrazolo [4,3-c]quinolines, chromeno [4,3-c] pyrazoles, and analogs for treatment of inflammation. WO 2003024936 (2003).

Pharmacia Corp. Preparation of 4,5-dihydro-1H-benzo[g]indazole-3-carboxamides for treatment of inflammation. WO 2003024935 (2003).

Tularik Inc. Preparation of imidazolylquinolinecarboxaldehyde semicarbazones as IKK modulators. WO 2002041843 (2002).

Smithkline Beecham Corp. Preparation of 5-amino-1H-imidazole-4-carboxamides as NF-κB inhibitors. WO 200230423 (2002).

Leo Pharma. A method using cyanoguanidine compounds for modulating NFκB activity and use for the treatment of cancer. WO 2002094265 (2002).

Leo Pharma. Antitumor drug–cyanoguanidine IKK inhibitor combination. WO 2002094322 (2002).

Schou, C. et al. Novel cyanoguanidines with potent oral antitumour activity. Bioorg. Med. Chem. Lett. 7, 3095–3100 (1997).

Hjarnaa, P. J. et al. CHS 828, a novel pyridyl cyanoguanidine with potent antitumor activity in vitro and in vivo. Cancer Res. 59, 5751–5157 (1999).

Martinsson, P. et al. The combination of the antitumoural pyridyl cyanoguanidine CHS 828 and etoposide in vitro — from cytotoxic synergy to complete inhibition of apoptosis. Br. J. Pharmacol. 137, 568–573, (2002).

Isis Pharmaceuticals, Inc. Antisense modulation of Inhibitor-κ B kinase-β gene expression WO 2000031105 (2000).

Takaesu, G. et al. TAK1 is critical for IκB kinase-mediated activation of the NF-κB pathway. J. Mol. Biol. 326, 105–15 (2003). This study reports the first demonstration of RNAi-based gene silencing of the IKK proteins and further establishes the role of TAK1, IKK-α and IKK-β on TNF-α and IL-1 activation of the NF-κB pathway.

May, M. J. & Ghosh, S. Anti-inflammatory compounds and uses thereof. A cell-permeable peptide encompassing NEMO binding domain of IκB kinase was able to not only inhibit TNFα-induced NF-κB activation but also reduce expression of E-selectin, an NF-κB-dependent target gene, in primary human endothelial cells. WO 2002156000 (2002).

May, M. et al. Selective inhibition of NF-κB activation by a peptide that blocks the interaction of NEMO with the IκB kinase complex. Science 289, 1550–1554 (2000). This study reports on the identification of the NEMO binding domain (NMD) of IKK-β and the potential use of an NMD peptide to block activation of the NF-κB pathway.