IICR và đồng bào cấu trúc không đứng yên: hướng tới suy luận nhân khẩu học với những thay đổi tùy ý trong cấu trúc quần thể

Heredity - Tập 121 Số 6 - Trang 663-678 - 2018
Willy Rodríguez1, Olivier Mazet1, Simona Grusea1, Armando Arredondo1, Josué Corujo2, Simon Boitard3, Lounès Chikhi4,5
1Institut de Mathématiques de Toulouse, Université de Toulouse, Institut National des Sciences Appliquées, Toulouse, France
2Facultad de Matemática y Computación, Universidad de La Habana, La Havana, Cuba
3GenPhySE, Université de Toulouse, INRA, INPT, INP-ENVT, Castanet Tolosan, France
4Instituto Gulbenkian de Ciência, Oeiras, Portugal
5Laboratoire Évolution & Diversité Biologique (EDB UMR 5174), Université de Toulouse Midi-Pyrénées, CNRS, IRD, Toulouse cedex 9, France

Tóm tắt

Tóm tắt

Trong những năm gần đây, một loạt các phương pháp cho phép tái cấu trúc những thay đổi về kích thước quần thể trong quá khứ từ dữ liệu toàn bộ genome đã được phát triển. Đồng thời, đã có một sự công nhận ngày càng tăng rằng cấu trúc quần thể có thể tạo ra dữ liệu di truyền tương tự như những dữ liệu được sản xuất theo các mô hình thay đổi kích thước quần thể. Gần đây, Mazet và cộng sự (Heredity 116:362–371, 2016) đã chỉ ra rằng, đối với bất kỳ mô hình cấu trúc quần thể nào, luôn có thể tìm thấy một mô hình panmictic với một chức năng cụ thể về những thay đổi kích thước quần thể, có phân phối chính xác giống như phân phối của mô hình có cấu trúc đối với T2 (thời gian hòa hợp cho một mẫu kích thước hai). Họ gọi chức năng này là IICR (Tỷ lệ hòa hợp ngược tức thì) và cho thấy rằng nó không nhất thiết phải tương ứng với những thay đổi về kích thước quần thể theo các mô hình không panmictic. Ngoài ra, hầu hết các phương pháp phân tích dữ liệu dưới các mô hình cấu trúc quần thể thường cố định cấu trúc đó một cách tùy ý và giảm thiểu hoặc bỏ qua những thay đổi kích thước quần thể. Tại đây, chúng tôi mở rộng công trình nền tảng của Herbots (Luận án Tiến sĩ, Đại học London, 1994) về cấu trúc đồng bào và đề xuất một khung mới, đồng bào cấu trúc không đứng yên (NSSC), bao gồm các sự kiện nhân khẩu học (thay đổi trong dòng gen và/hoặc kích thước quần thể) vào các mô hình gần như bất kỳ độ phức tạp nào. Chúng tôi chỉ ra cách tính toán IICR dưới một gia đình rộng lớn các mô hình đứng yên và không đứng yên. Như một ví dụ, chúng tôi giải quyết câu hỏi về sự tiến hóa của con người và người Neanderthal và thảo luận cách mà khung NSSC cho phép diễn giải dữ liệu di truyền dưới góc nhìn mới này.

Từ khóa


Tài liệu tham khảo

Barton N, Wilson I (1995) Genealogies and geography. Philos Trans R Soc Lond B: Biol Sci 349:49–59

Beaumont MA (1999) Detecting population expansion and decline using microsatellites. Genetics 153:2013–2029

Beaumont MA, Zhang W, Balding DJ (2002) Approximate Bayesian computation in population genetics. Genetics 162:2025–2035

Boitard S, Rodríguez W, Jay F, Mona S, Austerlitz F (2016) Inferring population size history from large samples of genome-wide molecular data-an approximate bayesian computation approach PLoS Genet 12:e1005877

Bunnefeld L, Frantz LA, Lohse K (2015) Inferring bottlenecks from genome-wide samples of short sequence blocks. Genetics 201:1157–1169

Charlesworth, Brian, Deborah Charlesworth, and Nicholas H. Barton (2003) The effects of genetic and geographic structure on neutral variation. Annual Review of Ecology, Evolution, and Systematics 34:1. 99–125.

Chevalet C, Nikolic N (2010) The distribution of coalescence times and distances between microsatellite alleles with changing effective population size. Theor Popul Biol 77:152–163

Chikhi L, Bruford MW, Beaumont MA (2001) Estimation of admixture proportions: a likelihood-based approach using Markov chain Monte Carlo. Genetics 158:1347–1362

Chikhi L, Rodríguez W, Grusea S, Santos P, Boitard S, Mazet O (2018) The IICR (inverse instantaneous coalescence rate) as a summary of genomic diversity: insights into demographic inference and model choice Heredity 120:13–24

Chikhi L, Sousa VC, Luisi P, Goossens B, Beaumont MA (2010) The confounding effects of population structure, genetic diversity and the sampling scheme on the detection and quantification of population size changes. Genetics 186:983–995

Costa RJ, Wilkinson-Herbots H (2017) Inference of gene flow in the process of speciation: An efficient maximum-likelihood method for the isolation-with-initial-migration model. Genetics 205:1597–1618. http://www.genetics.org/content/205/4/1597

Eriksson A, Manica A (2012) Effect of ancient population structure on the degree of polymorphism shared between modern human populations and ancient hominins. Proc Natl Acad Sci USA 109:13956–13960

Goldstein DB, Chikhi L (2002) Human migrations and population structure: what we know and why it matters. Annu Rev Genom Hum Genet 3:129–152

Gronau I, Hubisz MJ, Gulko B, Danko CG, Siepel A (2011) Bayesian inference of ancient human demography from individual genome sequences. Nat Genet 43:1031–1034

Gutenkunst RN, Hernandez RD, Williamson SH, Bustamante CD (2009) Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data. PLoS Genet 5:e1000695

Harpending H, Rogers A (2000) Genetic perspectives on human origins and differentiation. Annu Rev Genom Hum Genet 1:361–385

Heller R, Chikhi L, Siegismund HR (2013) The confounding effect of population structure on Bayesian skyline plot inferences of demographic history. PLoS ONE 8:e62992

Herbots HMJD (1994) Stochastic models in population genetics: genealogy and genetic differentiation in structured populations. PhD thesis University of London

Hey J, Machado CA (2003) The study of structured populations–new hope for a difficult and divided science. Nat Rev Genet 4:535

Hey J, Nielsen R (2004) Multilocus methods for estimating population sizes, migration rates and divergence time, with applications to the divergence of Drosophila pseudoobscura and D. persimilis. Genetics 167:747–760

Hobolth A, Andersen LN, Mailund T (2011) On computing the coalescence time density in an isolation-with-migration model with few samples. Genetics 187:1241–1243. http://www.genetics.org/content/187/4/1241.short

Hudson RR (2002) Generating samples under a Wright–Fisher neutral model of genetic variation. Bioinformatics 18:337–338. http://bioinformatics.oxfordjournals.org/content/18/2/337. abstract

Kimura, Motoo (1953) Stepping Stone'model of population. Annual Report of the National Institute of Genetics Japan 3: 62–63.

Kingman J (1982) The coalescent Stoch Process Appl 13:235–248. http://www.sciencedirect.com/science/article/pii/0304414982900114

Kozakai R, Shimizu A, Notohara M (2016) Convergence to the structured coalescent process. J Appl Probab 53:502–517

Kuhlwilm M, Gronau I, Hubisz MJ, de Filippo C, Prado-Martinez J, Kircher M et al. (2016) Ancient gene flow from early modern humans into eastern Neanderthals. Nature 530:429–433

Li H, Durbin R (2011) Inference of human population history from individual whole-genome sequences. Nature 475:493–496

Liu, Xiaoming and Yun-Xin Fu (2015) Exploring population size changes using SNP frequency spectra. Nature genetics 47:555

Malécot G, Blaringhem LF (1948) Les mathématiques de l’hérédité. Masson et Cie, Paris.

Marjoram P, Molitor J, Plagnol V, Tavaré S (2003) Markov chain monte carlo without likelihoods. Proc Natl Acad Sci USA 100:15324–15328

Mazet O, Rodríguez W, Chikhi L (2015) Demographic inference using genetic data from a single individual: Separating population size variation from population structure. Theor Popul Biol 104:46–58. http://www.sciencedirect.com/science/article/pii/S0040580915000581

Mazet O, Rodríguez W, Grusea S, Boitard S, Chikhi L (2016) On the importance of being structured: instantaneous coalescence rates and human evolution—lessons for ancestral population size inference Heredity 116:362–371

Moler C, Loan CV (2003) Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev 45:3–49. https://doi.org/10.1137/S00361445024180

Nielsen R, Wakeley J (2001) Distinguishing migration from isolation: a Markov chain Monte Carlo approach. Genetics 158:885–896

Nikolic N, Chevalet C (2014) Detecting past changes of effective population size. Evol Appl 7:663–681

Nordborg M (2001) Coalescent theory, pp. 179–212 in Handbook of Statistical Genetics, edited by D. J. Balding, M. Bishop and C. Cannings. Wiley, Chichester, UK

Norris, J.R (1998) Markov chains. Cambridge Series in Statistical and Probabilistic Mathematics, vol. 2. Cambridge University Press, Cambridge. Reprint of 1997 original

Notohara M (1990) The coalescent and the genealogical process in geographically structured population. J Math Biol 29:59–75

Paz-Vinas I, Quéméré E, Chikhi L, Loot G, Blanchet S (2013) The demographic history of populations experiencing asymmetric gene flow: combining simulated and empirical data. Mol Ecol 22:3279–3291

Prufer K, Racimo F, Patterson N, Jay F, Sankararaman S, Sawyer S et al. (2014) The complete genome sequence of a neanderthal from the altai mountains. Nature 505:43–49. https://doi.org/10.1038/nature12886

Rogers AR, Bohlender RJ, Huff CD (2017) Early history of neanderthals and denisovans. Proc Natl Acad Sci USA 114:9859–9863

Scerri EML, Thomas MG, Manica A, Gunz P, Stock JT, Stringer C et al. (2018) Did our species evolve in subdivided populations across africa, and why does it matter? Trends Ecol Evol. https://doi.org/10.1016/j.tree.2018.05.005

Schiffels S, Durbin R (2013) Inferring human population size and separation history from multiple genome sequences. Nat Genet 8:919–925

Städler T, Haubold B, Merino C, Stephan W, Pfaffelhuber P (2009) The impact of sampling schemes on the site frequency spectrum in nonequilibrium subdivided populations. Genetics 182:205–216

Storz JF, Beaumont MA (2002) Testing for genetic evidence of population expansion and contraction: an empirical analysis of microsatellite DNA variation using a hierarchical Bayesian model. Evolution 56:154–166

Takahata N (1988) The coalescent in two partially isolated diffusion populations. Genet Res 52:213–222

Wakeley J (1999) Nonequilibrium migration in human history. Genetics 153:1863–1871

Wakeley J (2001) The coalescent in an island model of population subdivision with variation among demes. Theor Popul Biol 59:133–144

Wilkinson-Herbots HM (1998) Genealogy and subpopulation differentiation under various models of population structure. J Math Biol 37:535–585

Wright S (1931) Evolution in Mendelian populations. Genetics 16:97