The IAU recommended photometric system for ultraviolet astronomy

Experimental Astronomy - Tập 56 - Trang 171-195 - 2023
Ana I. Gómez de Castro1,2, Noah Brosch3, Daniela Bettoni4, Leire Beitia-Antero1,5, Paul Scowen6, David Valls-Gabaud7, Mikhail Sachkov8
1Joint Center for Ultraviolet Astronomy, Universidad Complutense de Madrid, Madrid, Spain
2Sección Departamental, Departamento de Física de la Tierra y Astrofísica, Universidad Complutense de Madrid, Madrid, Spain
3The Wise Observatory and the Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
4INAF-Osservatorio Astronomico di Padova, INAF, Padova, Italy
5Departamento de Estadística e Investigación Operativa, Universidad Complutense de Madrid, Madrid, Spain
6Code 667, Exoplanets and Stellar Astrophysics Lab, NASA Goddard Space Flight Center, Greenbelt, USA
7LERMA, CNRS UMR 8112, Observatoire de Paris, Paris, France
8Institute of Astronomy, Russian Academy of Sciences, Moscow, Russia

Tóm tắt

In the current era when access to space is becoming easier and at a lower cost thanks to the standardised cubesat technology, numerous missions are expected to be launched to observe, particularly, at ultraviolet wavelengths. Given the reduced dimensions of the telescope that a cubesat can carry, most of these missions will be focused on photometric surveys of a reduced sample of targets of interest, and therefore each mission will define their own photometric bands according to their scientific objectives and orbital constraints. However, in order to provide a coherent view of the ultraviolet sky, the data should be post-processed under a common framework. In 2017, the IAU working group on ultraviolet astronomy identified the need to define such a common framework for the upcoming ultraviolet missions, and coordinated the definition of a standard set of photometric bands that could serve for homogenizing the current and future data. This paper presents the procedure adopted by the working group for the definition of the standard photometric system, that was approved by the IAU during the General Assembly Business Sessions held in August, 2021. The photometric system consists of seven bands, denoted as UV1-UV7, all included in the range 115 - 400 nm. Some of these bands are based on existing filters, while others have been defined as theoretical bands with constant throughput. This system is to be regarded as a set of synthetic bands for post-processing the data of any mission, and an example of its application to the SPARCS cubesat is also included. The photometric bands are publicly available and can be downloaded from https://www.nuva.eu/uv-photometry/ .

Tài liệu tham khảo

Ardila, D,R,, Shkolnik, E., Scowen, P., et al.: The Star-Planet Activity Research CubeSat (SPARCS): A Mission to Understand the Impact of Stars in Exoplanets. (2018). arXiv:1808.09954 [astro-ph.IM] Ardila, D. R., Shkolnik, E., Ziemer, J., et al.: The UV-SCOPE mission: ultraviolet spectroscopic characterization of planets and their environments. In: den Herder, J. W. A., Nikzad, S., Nakazawa, K. (eds) Space Telescopes and Instrumentation 2022: Ultraviolet to Gamma Ray, pp. 1218104. (2022). https://doi.org/10.1117/12.2629000, 2208.09547 Astropy Collaboration, Robitaille, T.P., Tollerud, E.J., Greenfield, P., Droettboom, M., Bray, E., Aldcroft, T., Davis, M., Ginsburg, A., Price-Whelan, A.M., Kerzendorf, W.E., Conley, A., Crighton, N., Barbary, K., Muna, D., Ferguson, H., Grollier, F., Parikh, M.M., Nair, P.H., Unther, H.M., Deil, C., Woillez, J., Conseil, S., Kramer, R., Turner, J.E.H., Singer, L., Fox, R., Weaver, B.A., Zabalza, V., Edwards, Z.I., Azalee Bostroem, K., Burke, D.J., Casey, A.R., Crawford, S.M., Dencheva, N., Ely, J., Jenness, T., Labrie, K., Lim, P.L., Pierfederici, F., Pontzen, A., Ptak, A., Refsdal, B., Servillat, M., Streicher, O.: Astropy: A community Python package for astronomy. Astron. Astrophys. 558, A33 (2013). https://doi.org/10.1051/0004-6361/201322068 Astropy Collaboration, Price-Whelan, A.M., Sipöcz, B.M., Günther, H.M., Lim, P.L., Crawford, S.M., Conseil, S., Shupe, D.L., Craig, M.W., Dencheva, N., Ginsburg, A., VanderPlas, J.T., Bradley, L.D., Pérez-Suárez, D., de Val-Borro, M., Aldcroft, T.L., Cruz, K.L., Robitaille, T.P., Tollerud, E.J., Ardelean, C., Babej, T., Bach, Y.P., Bache, M., Bakanov, A.V., Bamford, S.P., Barentsen, G., Barmby, P., Baumbach, A., Berry, K.L., Biscani, F., Boquien, M., Bostroem, K.A., Bouma, L.G., Brammer, G.B., Bray, E.M., Breytenbach, H., Buddelmeijer, H., Burke, D.J., Calderone, G., Cano Rodríguez, J.L., Cara, M., Cardoso, J.V.M., Cheedella, S., Copin, Y., Corrales, L., Crichton, D., D’Avella, D., Deil, C., Depagne, É., Dietrich, J.P., Donath, A., Droettboom, M., Earl, N., Erben, T., Fabbro, S., Ferreira, L.A., Finethy, T., Fox, R.T., Garrison, L.H., Gibbons, S.L.J., Goldstein, D.A., Gommers, R., Greco, J.P., Greenfield, P., Groener, A.M., Grollier, F., Hagen, A., Hirst, P., Homeier, D., Horton, A.J., Hosseinzadeh, G., Hu, L., Hunkeler, J.S., Ivezić, Ž., Jain, A., Jenness, T., Kanarek, G., Kendrew, S., Kern, N.S., Kerzendorf, W.E., Khvalko, A., King, J., Kirkby, D., Kulkarni, A.M., Kumar, A., Lee, A., Lenz, D., Littlefair, S.P., Ma, Z., Macleod, D.M., Mastropietro, M., McCully, C., Montagnac, S., Morris, B.M., Mueller, M., Mumford, S.J., Muna, D., Murphy, N.A., Nelson, S., Nguyen, G.H., Ninan, J.P., Nöthe, M., Ogaz, S., Oh, S., Parejko, J.K., Parley, N., Pascual, S., Paitl, R., Patil, A.A., Plunkett, A.L., Prochaska, J.X., Rastogi, T., Reddy Janga, V., Sabater, J., Sakurikar, P., Seifert, M., Sherbert, L.E., Sherwood-Taylor, H., Shih, A.Y., Sick, J., Silbiger, M.T., Singanamalla, S., Singer, L.P., Sladen, P.H., Sooley, K.A., Sornarajah, S., Streicher, O., Teuben, P., Thomas, S.W., Tremblay, G.R., Turner, J.E.H., Terrón, V., van Kerkwijk, M.H., de la Vega, A., Watkins, L.L., Weaver, B.A., Whitmore, J.B., Woillez, J., Zabalza, V., Astropy Contributors: The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package. Astron. J. 156, 123 (2018). https://doi.org/10.3847/1538-3881/aabc4f Bastian-Querner, B., Kaipachery, N., Küster, D., et al.: Sensor characterization for the ULTRASAT space telescope. In: Barto, A. A., Breckinridge, J. B., Stahl, H. P. (eds) UV/Optical/IR Space Telescopes and Instruments: Innovative Technologies and Concepts X, pp. 118190F. (2021). https://doi.org/10.1117/12.2593897, 2108.02521 Ben-Ami, S., Shvartzvald, Y., Waxman, E., et al.: The scientific payload of the ultraviolet transient astronomy satellite (ULTRASAT). In: den Herder, J. W. A., Nikzad, S., Nakazawa, K. (eds) Space Telescopes and Instrumentation 2022: Ultraviolet to Gamma Ray, pp. 1218105. (2022). https://doi.org/10.1117/12.2629850, 2208.00159 Boggess, A., Carr, F.A., Evans, D.C., et al.: The IUE spacecraft and instrumentation. Nature 275(5679), 372–377 (1978). https://doi.org/10.1038/275372a0 Bohlin, R.: Preliminary comparison of the HST and white dwarf absolute flux scales. In: Blades, J. C., Osmer, S. J. (eds) Calibrating Hubble Space Telescope, pp. 234. (1994) Bohlin, R.C.: Spectrophotometric standards from the Far-UV to the Near-IR on the white dwarf flux scale. Astron. J. 111, 1743 (1996). https://doi.org/10.1086/117914 Bohlin, R. C., Harris, A. W., Holm, A. V., et al.: The ultraviolet calibration of the hubble space telescope. IV. absolute IUE fluxes of hubble space telescope standard stars. Astrophys. J. Suppl. Ser. 73, 413 (1990). https://doi.org/10.1086/191474 Bohlin, R.C., Colina, L., Finley, D.S.: White dwarf standard stars: G191–B2B, GD 71, GD 153, HZ 43. Astron. J. 110, 1316 (1995). https://doi.org/10.1086/117606 Cardelli, J.A., Clayton, G.C., Mathis, J.S.: The Relationship between Infrared, Optical, and Ultraviolet Extinction. Astrophys. J. 345, 245 (1989). https://doi.org/10.1086/167900 Carruthers, G.R., Page, T.: Apollo 16 Far-Ultraviolet Camera/Spectrograph: Earth Observations. Science 177(4051), 788–791 (1972). https://doi.org/10.1126/science.177.4051.788 Chung, H., Vargas, C. J., Hamden, E., et al.: Aspera: the UV SmallSat telescope to detect and map the warm-hot gas phase in nearby galaxy halos. In: Barto, A. A., Breckinridge, J. B., Stahl, H. P. (eds) UV/Optical/IR Space Telescopes and Instruments: Innovative Technologies and Concepts X, pp. 1181903. (2021). https://doi.org/10.1117/12.2593001 Côté, P.: Wide-field UV imaging: Current capabilities and performance requirements for future missions. Advances in Space Research 53(6), 982–989 (2014). https://doi.org/10.1016/j.asr.2013.11.033 Draine, B. T.: Interstellar dust grains. Annu. Rev. Astron. Astrophys. 41, 241–289 (2003). https://doi.org/10.1146/annurev.astro.41.011802.094840. arXiv:astro-ph/0304489 [astro-ph] Draine, B.T., Malhotra, S.: On graphite and the 2175 angstrom extinction profile. Astrophys. J. 414, 632 (1993). https://doi.org/10.1086/173109 Egan, A., Fleming, B. T., France, K., et al.: The Colorado ultraviolet transit experiment (CUTE): final design and projected performance. In: den Herder, J. W. A., Nikzad, S., Nakazawa, K. (eds) Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray, pp. 106990C. (2018). https://doi.org/10.1117/12.2309990 Fitzpatrick, E. L., Massa, D.: An analysis of the shapes of ultraviolet extinction curves. I. The 2175 angstrom bump. Astrophys. J. 307, 286 (1986). https://doi.org/10.1086/164415 Fitzpatrick, E. L., Massa, D.: An analysis of the shapes of interstellar extinction curves. V. The IR-through-UV curve morphology. Astrophys. J. 663(1), 320–341 (2007). https://doi.org/10.1086/518158. arXiv:0705.0154 [astro-ph] France, K., Fleming, B., Egan, A., et al.: The colorado ultraviolet transit experiment mission overview. Astron. J. 165(2), 63 (2023). https://doi.org/10.3847/1538-3881/aca8a2. arXiv:2301.02250 [astro-ph.IM] Gehrels, N., Chincarini, G., Giommi, P., et al.: The swift gamma-ray burst mission. Astrophys. J. 611(2), 1005–1020 (2004). https://doi.org/10.1086/422091, arXiv:astro-ph/0405233 [astro-ph] Gómez de Castro, A. I., Barstow, M. A., Brosch, N., et al.: UV facilities for the investigation of the origin of life. In: Gómez de Castro, A. I. (ed) Ultraviolet Astronomy and the Quest for the Origin of Life. Elsevier, pp. 115–160. (2021). https://doi.org/10.1016/B978-0-12-819170-5.00004-X Gordon, K.D., Cartledge, S., Clayton, G.C.: FUSE Measurements of Far-Ultraviolet Extinction. III. The Dependence on R(V) and Discrete Feature Limits from 75 Galactic Sightlines. Astrophys. J. 705(2), 1320–1335 (2009). https://doi.org/10.1088/0004-637X/705/2/1320 Gordon, K.D., Fouesneau, M., Arab, H., Tchernyshyov, K., Weisz, D.R., Dalcanton, J.J., Williams, B.F., Bell, E.F., Bianchi, L., Boyer, M., Choi, Y., Dolphin, A., Girardi, L., Hogg, D.W., Kalirai, J.S., Kapala, M., Lewis, A.R., Rix, H-W., Sandstrom, K., Skillman, E.D.: The Panchroma+c Hubble Andromeda Treasury. XV. The BEAST: Bayesian Extinction and Stellar Tool. Astrophys. J. 826(2), 104 (2016). https://doi.org/10.3847/0004-637X/826/2/104 Hamden, E. T., Schiminovich, D., Nikzad, S., et al.: Hyperion: the origin of the stars. A far UV space telescope for high-resolution spectroscopy over wide fields. Journal of Astronomical Telescopes, Instruments, and Systems 8, 044008 (2022). https://doi.org/10.1117/1.JATIS.8.4.044008, arXiv:2212.06869 [astro-ph.SR] Hayes, D.S., Latham, D.W.: A rediscussion of the atmospheric extinction and the absolute spectral-energy distribution of Vega. Astrophys. J. 197, 593–601 (1975). https://doi.org/10.1086/153548 Hennessy, J., Jewell, A. D., Hoenk, M. E., et al.: Advances in detector-integrated filter coatings for the far ultraviolet. In: Siegmund, O. H. (ed) UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XXII, pp. 118211A (2021). https://doi.org/10.1117/12.2595524 Hunter, J. D.: Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 9(3), 90–95 (2007) Jansen, F., Lumb, D., Altieri, B., et al.: XMM-Newton observatory. I. The spacecraft and operations. Astron. Astrophys. 365, L1–L6 (2001). https://doi.org/10.1051/0004-6361:20000036 Kulkarni, S. R., Harrison, F. A., Grefenstette, B. W., et al.: Science with the Ultraviolet Explorer (UVEX). (2021). https://doi.org/10.48550/arXiv.2111.15608. arXiv:2111.15608. [astro-ph.GA] Luger, R., Barnes, R.: Extreme water loss and abiotic O2Buildup on planets throughout the habitable zones of M dwarfs. Astrobiology 15(2), 119–143 (2015). https://doi.org/10.1089/ast.2014.1231. arXiv:1411.7412 [astro-ph.EP] Malherbe, A.: Interference filters for the far ultraviolet. Appl. Opt. 13(6), 1275 (1974). https://doi.org/10.1364/AO.13.001275 Malherbe, A.: Multidielectric components for the far ultraviolet. Appl. Opt. 13(6), 1276 (1974). https://doi.org/10.1364/AO.13.001276 Martin, D. C., Fanson, J., Schiminovich, D., et al.: The galaxy evolution explorer: a space ultraviolet survey mission. Astrophys. J. Lett. 619(1), L1–L6 (2005). https://doi.org/10.1086/426387. arXiv:astro-ph/0411302 [astro-ph] Moos, H. W., Cash, W. C., Cowie, L. L., et al.: Overview of the Far Ultraviolet Spectroscopic Explorer Mission. Astrophys. J. Lett. 538(1), L1–L6 (2000). https://doi.org/10.1086/312795. arXiv:astro-ph/0005529 [astro-ph] Rodríguez-De Marcos, L., Larruquert, J.I., Méndez, J.A., et al.: Narrowband filters for the FUV range. In: Takahashi, T., den Herder, J. W. A., Bautz, M. (eds) Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray, pp. 914437. (2014). https://doi.org/10.1117/12.2056666 Rogerson, J.B., Spitzer, L., Drake, J.F., et al.: Spectrophotometric results from the copernicus satellite. I. instrumentation and performance. Astrophys. J. Lett. 181, L97–L102 (1973). https://doi.org/10.1086/181194 Sachkov, M., Gómez de Castro, A.I., Shustov, B.: The World Space Observatory: ultraviolet mission: science program and status report. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, pp. 1144473. (2020). https://doi.org/10.1117/12.2562929 Scowen, P.A., Nemanich, R., Eller, B., et al.: Use of plasma enhanced ALD to construct efficient interference filters for astronomy in the FUV. In: Navarro, R., Burge, J.H. (eds) Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation II, pp. 99122F (2016). https://doi.org/10.1117/12.2232704 Segura, A., Walkowicz, L.M., Meadows, V., et al.: The effect of a strong stellar flare on the atmospheric chemistry of an earth-like planet orbiting an M dwarf. Astrobiology 10(7), 751–771 (2010). https://doi.org/10.1089/ast.2009.0376. arXiv:1006.0022 [astro-ph.EP] Shkolnik, E.L., Barman, T.S.: HAZMAT. I. The Evolution of Far-UV and Near-UV emission from early M stars. Astron. J. 148(4), 64 (2014). https://doi.org/10.1088/0004-6256/148/4/64. arXiv:1407.1344 [astro-ph.SR] Shugarov, A.S., Sachkov, M., Bruce, G., et al.: WSO-UV mission WUVS instrument FUV-UV CCD detectors qualification campaign main results. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, pp. 118525D. (2021). https://doi.org/10.1117/12.2599948 Singh, K.P., Tandon, S.N., Agrawal, P.C., et al.: ASTROSAT mission. In: Takahashi, T., den Herder, J. W. A., Bautz, M. (eds) Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray, p 91441S. (2014). https://doi.org/10.1117/12.2062667 Tandon, S.N., Postma, J., Joseph, P., et al.: Additional calibration of the ultraviolet imaging telescope on board AstroSat. Astron. J. 159(4), 158 (2020). https://doi.org/10.3847/1538-3881/ab72a3. arXiv:2002.01159 [astro-ph.IM] Thompson, G.I., Nandy, K., Jamar, C., et al.: Catalogue of stellar ultraviolet fluxes : a compilation of absolute stellar fluxes measured by the Sky Survey Telescope (S2/68) aboard the ESRO satellite TD-1. Scientific Research Council (1978) Tokunaga, A.T., Vacca, W.D.: The Mauna Kea Observatories Near-Infrared Filter Set. III. Isophotal Wavelengths and Absolute Calibration. Publ. Astron. Soc. Pac. 117(830):421–426 (2005). https://doi.org/10.1086/429382. arXiv:astro-ph/0502120 [astro-ph] Turnshek, D.A., Bohlin, R.C., Williamson, I.R.L., et al.: An atlas of hubble space telescope photometric, spectrophotometric, and polarimetric calibration objects. Astron. J. 99, 1243 (1990). https://doi.org/10.1086/115413 Valls-Gabaud, D., MESSIER Collaboration: The MESSIER surveyor: unveiling the ultra-low surface brightness universe. In: Gil de Paz, A., Knapen, J.H., Lee, J.C. (eds) Formation and Evolution of Galaxy Outskirts, pp. 199–201, (2017). https://doi.org/10.1017/S1743921316011388