The Human Immune Response to Respiratory Syncytial Virus Infection

Clinical Microbiology Reviews - Tập 30 Số 2 - Trang 481-502 - 2017
Clark D Russell1, Stefan Unger2, Marc K. Walton1, Jürgen Schwarze2,1
1MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
2; Department of Child Life and Health; University of Edinburgh; Edinburgh UK

Tóm tắt

SUMMARYRespiratory syncytial virus (RSV) is an important etiological agent of respiratory infections, particularly in children. Much information regarding the immune response to RSV comes from animal models andin vitrostudies. Here, we provide a comprehensive description of the human immune response to RSV infection, based on a systematic literature review of research on infected humans. There is an initial strong neutrophil response to RSV infection in humans, which is positively correlated with disease severity and mediated by interleukin-8 (IL-8). Dendritic cells migrate to the lungs as the primary antigen-presenting cell. An initial systemic T-cell lymphopenia is followed by a pulmonary CD8+T-cell response, mediating viral clearance. Humoral immunity to reinfection is incomplete, but RSV IgG and IgA are protective. B-cell-stimulating factors derived from airway epithelium play a major role in protective antibody generation. Gamma interferon (IFN-γ) has a strongly protective role, and a Th2-biased response may be deleterious. Other cytokines (particularly IL-17A), chemokines (particularly CCL-5 and CCL-3), and local innate immune factors (including cathelicidins and IFN-λ) contribute to pathogenesis. In summary, neutrophilic inflammation is incriminated as a harmful response, whereas CD8+T cells and IFN-γ have protective roles. These may represent important therapeutic targets to modulate the immunopathogenesis of RSV infection.

Từ khóa


Tài liệu tham khảo

10.1046/j.1440-1754.2001.00618.x

10.1002/ppul.10140

10.1086/512615

10.4049/jimmunol.179.12.8410

10.1136/adc.71.5.428

Emboriadou M HatzistilianouMMagnisaliCSakelaropoulouAExintariMContiPAivazisV. 2007. Human neutrophil elastase in RSV bronchiolitis. Ann Clin Lab Sci37:79–84.

10.1034/j.1399-3003.1999.14a23.x

10.1046/j.1365-2249.1998.00681.x

Wang SZ SmithPKLovejoyMBowdenJJAlpersJHForsythKD. 1998. Shedding of L-selectin and PECAM-1 and upregulation of Mac-1 and ICAM-1 on neutrophils in RSV bronchiolitis. Am J Physiol275:L983–L989.

10.1128/JVI.01807-09

10.1038/modpathol.3800725

10.1093/infdis/jir280

10.1002/jmv.10421

10.1002/path.4660

10.1097/INF.0b013e3181a3ea71

10.1080/003655498750002349

10.1111/1348-0421.12265

10.1038/pr.2012.163

10.1371/journal.pone.0131927

10.1136/thoraxjnl-2015-207358

10.1203/PDR.0b013e31816fdc32

10.1086/593018

10.1086/428589

10.1111/irv.12242

10.1093/infdis/168.6.1515

10.1164/ajrccm/145.4_Pt_1.934

10.1186/1465-9921-11-143

10.1111/j.1365-2249.2004.02364.x

10.1111/j.1365-2249.2006.03084.x

10.1111/j.1442-200X.2006.02199.x

10.1111/j.1365-2222.2004.1918.x

10.3346/jkms.2007.22.1.37

10.1164/ajrccm.159.6.9805083

10.1016/j.jaci.2014.12.1429

10.1016/S0022-3476(05)80592-X

10.1203/00006450-198810000-00018

Bermejo-Martin JF Garcia-ArevalolMCDe LejarazuROArduraJEirosJMAlonsoAMatiasVPinoMBernardoDArranzEBlanco-QuirosA. 2007. Predominance of Th2 cytokines, CXC chemokines and innate immunity mediators at the mucosal level during severe respiratory syncytial virus infection in children. Eur Cytokine Netw18:162–167.

10.1016/S1081-1206(10)62383-6

10.2332/allergolint.10-OA-0263

10.1136/adc.76.3.210

10.1016/j.jaci.2007.03.014

10.1111/j.1365-2249.2004.02512.x

10.1164/ajrccm.156.1.9611050

10.1007/s10875-007-9141-8

10.1111/j.1365-2249.2004.02502.x

10.1080/00365540050164146

10.1164/ajrccm.160.4.9812025

10.1542/peds.2005-2119

10.1002/jmv.10396

10.1164/rccm.201311-1977LE

Li B WuFLFengXBSunDKCuiQQZhaoZX. 2012. Changes and the clinical significance of CD4(+) CD25(+) regulatory T cells and Th17 cells in peripheral blood of infants with respiratory syncytial virus bronchiolitis. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi28:426–428.

Bacharier LB CoverstoneASchweigerTGregoryGYin-DeClueHSajolGGiriTSierraOAtkinsonJWilsonBZhengJSchechtmanKCastroM. 2013. Regulatory T cells in acute severe RSV bronchiolitis, abstr 187. Abstr Am J Respir Crit Care Med Conf.

10.1016/S0140-6736(87)92502-5

10.1038/ncomms10224

10.1038/mi.2014.106

10.1111/cei.12720

10.1007/s00134-004-2470-7

10.1128/CVI.00580-12

10.1086/429695

10.1513/pats.200507-073JS

10.1038/sj.bmt.1703139

10.1136/adc.88.10.922

10.1086/597386

10.1111/j.1399-3038.1997.tb00151.x

10.1086/591460

10.1111/j.1399-3038.1997.tb00134.x

10.1136/thoraxjnl-2012-202288

Fonceca A McNamaraPHowarthDTrinickRAlturaikiWSmythRFlanaganB. 2011. Human respiratory syncytial virus infection in vivo and in vitro induces airway epithelial cell expression of the B cell differentiation factor BAFF. Immunology135:94.

10.1016/S0928-0197(97)10002-2

10.1086/657158

10.1002/jmv.1890300208

10.1007/BF01713039

10.1093/infdis/jiv281

10.1164/rccm.201412-2256OC

Bagga B CehelskyJVaishnawAWilkinsonTMeyersRHarrisonLRoddamPWalshEEDeVincenzoJP. 2011. Effect of serum and mucosal antibody on experimental RSV infections of adults. J Invest Med59:487–488.

10.1093/infdis/163.4.693

10.1016/j.antiviral.2004.04.005

10.1086/421524

10.1086/517376

Medrano Gonzalez L JozwikAAHabibiMSOpenshawPJMChiuC. 2014. Quality of antigen-specific B-cell responses as a correlate of protection against RSV. Immunology143:75.

10.1111/j.1442-200X.1995.tb03356.x

10.1002/jmv.22134

10.1128/jcm.23.6.1009-1014.1986

10.1099/0022-1317-75-8-2115

10.1002/jmv.20724

10.1093/infdis/jis700

10.1128/cdli.1.4.469-472.1994

10.1002/jmv.20203

10.1002/jmv.1890090210

Kaul TN WelliverRCFadenHSOgraPL. 1984. The development of respiratory syncytial virus-specific immune complexes in nasopharyngeal secretions following natural infection. J Clin Lab Immunol15:187–190.

10.1128/iai.37.2.492-498.1982

10.1128/jcm.31.4.819-823.1993

10.1093/infdis/175.1.32

10.1056/NEJM198110083051501

10.1016/j.jaci.2015.12.486

10.1002/ppul.1950150104

10.1002/jmv.24047

Hattori S ShimojoNMashimoTInoueYOnoYKohnoYOkamotoYHataASuzukiY. 2011. Relationship between RANTES polymorphisms and respiratory syncytial virus bronchiolitis in a Japanese infant population. Jpn J Infect Dis64:242–245.

Fernandez JA RoineIVazquezACaneoM. 2005. Soluble interleukin-2 receptor (sCD25) and interleukin-10 plasma concentrations are associated with severity of primary respiratory syncytial virus (RSV) infection. Eur Cytokine Netw16:81–90.

Fernandez JA TapiaLPalominoMALarranagaCPenaMJaramilloH. 2005. Plasma interferon-gamma, interleukin-10 and soluble markers of immune activation in infants with primary adenovirus (ADV) and respiratory syncytial virus (RSV) infection. Eur Cytokine Netw16:35–40.

10.1111/j.1399-3038.2006.00501.x

10.1034/j.1399-3003.1999.14a24.x

10.1086/322788

10.1007/s00408-011-9349-5

10.1111/j.1399-3038.2009.00908.x

10.1371/journal.pone.0001038

10.1097/INF.0b013e31822dc8c1

10.1086/515575

10.1016/j.jaci.2005.07.012

10.1086/322035

10.4067/S0034-98872013000500004

10.2223/1206,10.2223/JPED.1206

10.1183/09031936.03.00048103

10.1002/jmv.20277

10.1128/cdli.2.3.322-324.1995

10.1097/00006454-199812000-00003

10.1002/jmv.10482

10.1002/jmv.23291

10.1097/INF.0b013e3182a14407

10.1002/jmv.20089

10.1093/infdis/jis721

10.1542/peds.2012-0160

Hassan MA EldinAMAhmedMM. 2008. T-helper2/T-helper1 imbalance in respiratory syncytial virus bronchiolitis in relation to disease severity and outcome. Egyptian J Immunol15:153–160.

Vieira RA DinizEMAMejrC. 2010. Concentrations of inflammatory mediators in Brazilian newborn with respiratory syncytial virus lower respiratory tract infection. J Maternal-Fetal Neonatal Med23:635–636.

10.1590/S1806-37132010000100011

10.1007/s004310000676

10.1177/205873920601900124

10.1016/S1081-1206(10)61307-5

10.2332/allergolint.O-06-454

10.1371/journal.ppat.1005217

10.1016/S0140-6736(04)15838-8

10.1097/00006454-199902000-00007

10.1016/j.cyto.2015.07.017

10.1016/S1386-6532(01)00159-7

10.1002/1096-9071(200010)62:2<267::AID-JMV20>3.0.CO;2-8

10.1097/MD.0000000000001512

10.1093/infdis/jit038

10.1164/rccm.201002-0221OC

10.1172/JCI75183

10.1111/j.1399-3038.2010.01032.x

10.1164/rccm.200210-1148OC

10.1111/j.1651-2227.2002.tb02877.x

10.1038/pr.2015.113

10.1002/ppul.10101

10.1086/339008

10.1006/clim.2002.5248

10.1002/ppul.10080

10.1097/00006454-199510000-00027

10.1006/clim.2000.4914

10.1002/jmv.24025

10.1016/j.humimm.2011.05.016

10.1371/journal.pone.0078461

10.1086/428855

Becker S ReedWHendersonFWNoahTL. 1997. RSV infection of human airway epithelial cells causes production of the beta-chemokine RANTES. Am J Physiol272:L512–L520.

10.1089/088318701753436880

10.1002/jmv.20268

10.1128/CVI.00445-08

10.1097/00006454-199311000-00007

10.1016/j.jinf.2013.12.010

10.1097/INF.0000000000000825

10.1371/journal.ppat.1005122

10.1186/s12879-015-0878-z

10.1002/cbin.10518

10.1371/journal.pmed.1001549

10.1097/INF.0b013e318278b4b3

10.1186/1471-2334-6-175

10.1183/09031936.00085614

10.1542/peds.2016-1377

10.1164/rccm.201509-1759OC

10.1164/rccm.201602-0220OC

10.1371/journal.pone.0087162

10.1056/NEJMoa1211917

10.1111/j.1399-3038.2009.00868.x

10.1016/j.jaci.2015.12.1321

10.1007/s12016-013-8368-9

10.1371/journal.ppat.1004757

10.4049/jimmunol.1502478

10.1164/ajrccm.159.4.9709065

10.1136/adc.75.2.133

10.1111/j.1651-2227.1999.tb00186.x

10.1203/00006450-199912000-00023

10.1183/09031936.00105613

10.1097/01.ccm.0000424394.89408.e6

10.1183/09031936.00012311

10.1002/jmv.21634

10.1165/rcmb.2009-0100OC