The Hsp70 and Hsp60 Chaperone Machines
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bochkareva, 1994, ATP induces non-identity of two rings in chaperonin GroEL, J. Biol. Chem., 269, 23869, 10.1016/S0021-9258(19)51017-1
Bochkareva, 1992, Positive cooperativity in the functioning of molecular chaperone GroEL, J. Biol. Chem., 267, 6796, 10.1016/S0021-9258(19)50496-3
Boisvert, 1996, The 2.4 Å crystal structure of the bacterial chaperonin GroEL complexed with ATPγS, Nature Struct. Biol., 3, 170, 10.1038/nsb0296-170
Braig, 1993, A polypeptide bound by the chaperonin groEL is localized within a central cavity, Proc. Natl. Acad. Sci. USA, 90, 3978, 10.1073/pnas.90.9.3978
Braig, 1994, The crystal structure of the bacterial chaperonin GroEL at 2.8 Å, Nature, 371, 578, 10.1038/371578a0
Buchberger, 1995, Nucleotide-induced conformational changes in the ATPase and substrate binding domains of the DnaK chaperone provide evidence for interdomain communication, J. Biol. Chem., 270, 16903, 10.1074/jbc.270.28.16903
Buchberger, 1996, Substrate shuttling between the DnaK and GroEL systems indicates a chaperone network promoting protein folding, J. Mol. Biol., 261, 328, 10.1006/jmbi.1996.0465
Buckle, 1997, A structural model for GroEL-polypeptide recognition, Proc. Natl. Acad. Sci. USA, 94, 3571, 10.1073/pnas.94.8.3571
Burston, 1995, The origins and consequences of asymmetry in the chaperonin reaction cycle, J. Mol. Biol., 249, 138, 10.1006/jmbi.1995.0285
Burston, 1996, Release of both native and non-native proteins from a cis-only GroEL ternary complex, Nature, 383, 96, 10.1038/383096a0
Chen, 1994, Location of a folding protein and shape changes in GroEL-GroES complexes imaged by cryo-electron microscopy, Nature, 371, 261, 10.1038/371261a0
Dekker, 1997, Role of the mitochondrial GrpE and phosphate in the ATPase cycle of matrix Hsp70, J. Mol. Biol., 270, 321, 10.1006/jmbi.1997.1131
Ehrnsperger, 1997, Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation, EMBO J., 16, 221, 10.1093/emboj/16.2.221
1996
Fenton, 1994, Residues in chaperonin GroEL required for polypeptide binding and release, Nature, 371, 614, 10.1038/371614a0
Flaherty, 1990, Three-dimensional structure of the ATPase fragment of a 70K heat-shock cognate protein, Nature, 346, 623, 10.1038/346623a0
Flaherty, 1994, Structural basis of the 70-kilodalton heat shock cognate protein ATP hydrolytic activity. II. Structure of the active site with ADP or ATP bound to wild type or mutant ATPase fragment, J. Biol. Chem., 269, 12899, 10.1016/S0021-9258(18)99961-8
Flynn, 1989, Peptide binding and release by proteins implicated as catalysts of protein assembly, Science, 245, 385, 10.1126/science.2756425
Flynn, 1991, Peptide-binding specificity of the molecular chaperone BiP, Nature, 353, 726, 10.1038/353726a0
Freeman, 1996, The human cytosolic molecular chaperones hsp90, hsp70 (hsc70) and hdj-1 have distinct roles in recognition of a non-native protein and protein refolding, EMBO J., 15, 2969, 10.1002/j.1460-2075.1996.tb00660.x
Gamer, 1996, A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates activity of the E. coli heat shock transcription factor σ32, EMBO J., 15, 607, 10.1002/j.1460-2075.1996.tb00393.x
Gao, 1992, A cytoplasmic chaperonin that catalyzes β-actin folding, Cell, 69, 1043, 10.1016/0092-8674(92)90622-J
Gao, 1993, Nucleotide binding properties of bovine brain uncoating ATPase, J. Biol. Chem., 268, 8507, 10.1016/S0021-9258(18)52904-5
Gao, 1994, Characterization of nucleotide-free uncoating ATPase and its binding to ATP, ADP and ATP analogues, Biochemistry, 33, 2048, 10.1021/bi00174a010
Gervasoni, 1996, β-Lactamase binds to GroEL in a conformation highly protected against hydrogen/deuterium exchange, Proc. Natl. Acad. Sci. USA, 93, 12189, 10.1073/pnas.93.22.12189
Goldberg, 1997, Native-like structure of a protein-folding intermediate bound to the chaperonin GroEL, Proc. Natl. Acad. Sci. USA, 94, 1080, 10.1073/pnas.94.4.1080
Goloubinoff, 1989, Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfolded state depends on two chaperonin proteins and MgATP, Nature, 342, 884, 10.1038/342884a0
Gordon, 1994, Selective in vivo rescue by GroEL/ES of thermolabile folding intermediates to phage P22 structural proteins, J. Biol. Chem., 269, 27941, 10.1016/S0021-9258(18)46878-0
Gray, 1991, Cooperativity in ATP hydrolysis by GroEL is increased by GroES, FEBS Lett., 292, 254, 10.1016/0014-5793(91)80878-7
Groβ, 1996, Significant hydrogen exchange protection in GroEL-bound DHFR is maintained during iterative rounds of substrate cycling, Protein Sci., 5, 2506, 10.1002/pro.5560051213
Ha, 1994, ATPase kinetics of recombinant bovine 70 kDa heat shock cognate protein and its amino-terminal ATPase domain, Biochemistry, 33, 14625, 10.1021/bi00252a031
Ha, 1995, Kinetics of nucleotide-induced changes in the tryptophane fluorescence of the molecular chaperone Hsc70 and its subfragments suggest the ATP-induced conformational change follows initial ATP binding, Biochemistry, 34, 11635, 10.1021/bi00036a040
Ha, J.-H., Johnson, E.R., McKay, D.B., Sousa, M.C., Takeda, S., and Wilbanks, S.M. (1997). Structure and properties of the 70-kilodalton heat-shock proteins. In Molecular Chaperones in the Life Cycle of Proteins, A.L. Fink and Y. Goto, eds. (New York: Marcel Dekker Inc.), pp. 35–122.
Harrison, 1997, Crystal structure of the nucleotide exchange factor GrpE bound to the ATPase domain of the molecular chaperone DnaK, Science, 276, 431, 10.1126/science.276.5311.431
Hayer-Hartl, 1995, Asymmetrical interaction of GroEL and GroES in the ATPase cycle of assisted protein folding, Science, 269, 836, 10.1126/science.7638601
Helenius, 1997, Calnexin, calreticulin and the folding of glycoproteins, Trends Cell Biol., 7, 193, 10.1016/S0962-8924(97)01032-5
Höhfeld, 1997, GrpE-like regulation of the Hsc70 chaperone by the anti-apoptotic protein BAG-1, EMBO J., 16, 6209, 10.1093/emboj/16.20.6209
Hunt, 1996, The crystal structure of the GroES co-chaperonin at 2.8 Å resolution, Nature, 379, 37, 10.1038/379037a0
Hunt, 1997, Structural adaptations in the specialized bacteriophage T4 co-chaperonin Gp31 expand the size of the Anfinsen cage, Cell, 90, 361, 10.1016/S0092-8674(00)80343-8
Jackson, 1993, Binding and hydrolysis of nucleotides in the chaperonin catalytic cycle, Biochemistry, 32, 2554, 10.1021/bi00061a013
Jordan, 1995, Modulation of the ATPase activity of the molecular chaperone DnaK by peptides and the DnaJ and GrpE heat shock proteins, J. Biol. Chem., 270, 4563, 10.1074/jbc.270.9.4563
Karzai, 1996, A bipartite signaling mechanism involved in DnaJ-mediated activation of the Escherichia coli DnaK protein, J. Biol. Chem., 271, 11236, 10.1074/jbc.271.19.11236
Katsumata, 1996, Effect of GroEL on the re-folding kinetics of α-lactalbumin, J. Mol. Biol., 258, 827, 10.1006/jmbi.1996.0290
Klumpp, 1997, Structure of the substrate binding domain of the thermosome, an archaeal group II chaperonin, Cell, 91, 263, 10.1016/S0092-8674(00)80408-0
Landry, 1993, Characterization of a functionally important mobile domain of GroES, Nature, 364, 255, 10.1038/364255a0
Langer, 1992, Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding, Nature, 356, 683, 10.1038/356683a0
Langer, 1992, Chaperonin-mediated protein folding, EMBO J., 11, 4757, 10.1002/j.1460-2075.1992.tb05581.x
Laufen, T., Zuber, U., Buchberger, A., and Bukau, B. (1997). DnaJ proteins. In Molecular Chaperones in the Life Cycle of Proteins, A.L. Fink and Y. Goto, eds. (New York: Marcel Dekker), pp. 241–274.
Lee, 1997, A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state, EMBO J., 16, 659, 10.1093/emboj/16.3.659
Levchenko, 1997, PDZ-like domains mediate binding specificity in the Clp/Hsp100 family of chaperones and protease regulatory subunits, Cell, 91, 939, 10.1016/S0092-8674(00)80485-7
Levy, 1995, Conserved ATPase and luciferase refolding activities between bacteria and yeast Hsp70 chaperones and modulator, FEBS Lett., 368, 435, 10.1016/0014-5793(95)00704-D
Liberek, 1991, Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK, Proc. Natl. Acad. Sci. USA, 88, 2874, 10.1073/pnas.88.7.2874
Liberek, 1995, The DnaJ chaperone catalytically activates the DnaK chaperone to preferentially bind the sigma 32 heat shock transcriptional regulator, Proc. Natl. Acad. Sci. USA, 92, 6224, 10.1073/pnas.92.14.6224
Lin, 1995, The hydrophobic nature of GroEL-substrate binding, J. Biol. Chem., 270, 1011, 10.1074/jbc.270.3.1011
Mande, 1996, Structure of the heat shock protein chaperonin-10 of Mycobacterium leprae, Science, 271, 203, 10.1126/science.271.5246.203
Martin, 1991, Chaperonin-mediated protein folding at the surface of groEL through a “molten globule”-like intermediate, Nature, 352, 36, 10.1038/352036a0
Mayhew, 1996, Protein folding in the central cavity of the GroEL-GroES chaperonin complex, Nature, 379, 420, 10.1038/379420a0
McCarty, 1995, The role of ATP in the functional cycle of the DnaK chaperone system, J. Mol. Biol., 249, 126, 10.1006/jmbi.1995.0284
Mendoza, 1991, Chaperonins facilitate the in vitro folding of monomeric mitochondrial rhodanese, J. Biol. Chem., 266, 13044, 10.1016/S0021-9258(18)98800-9
Mendoza, 1992, Characterization of a stable, reactivatable complex between chaperonin 60 and mitochondrial rhodanese, J. Biol. Chem., 267, 24648, 10.1016/S0021-9258(18)35813-7
Miao, 1997, Mge1 functions as a nucleotide release factor for Ssc1, a mitochondrial Hsp70 of Saccharomyces cerevisiae, J. Mol. Biol., 265, 541, 10.1006/jmbi.1996.0762
Morimoto, 1994
Murai, 1995, Kinetic analysis of interactions between GroEL and reduced α-lactalbumin. Effect of GroES and nucleotides, J. Biol. Chem., 270, 19957, 10.1074/jbc.270.34.19957
O'Brien, 1996, Lysine 71 of the chaperone protein Hsc70 is essential for ATP hydrolysis, J. Biol. Chem., 271, 15874, 10.1074/jbc.271.27.15874
Packschies, 1997, GrpE accelerates nucleotide exchange of the molecular chaperone DnaK with an associative displacement mechanism, Biochemistry, 36, 3417, 10.1021/bi962835l
Palleros, 1993, ATP-induced protein-Hsp70 complex dissociation requires K+ but not ATP hydrolysis, Nature, 365, 664, 10.1038/365664a0
Pellecchia, 1996, NMR structure of the J-domain and the Gly/Phe-rich region of the Escherichia coli DnaJ chaperone, J. Mol. Biol., 260, 236, 10.1006/jmbi.1996.0395
Pierpaoli, 1997, The power stroke of the DnaK/DnaJ/GrpE molecular chaperone system, J. Mol. Biol., 269, 757, 10.1006/jmbi.1997.1072
Prodromou, 1997, Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone, Cell, 90, 65, 10.1016/S0092-8674(00)80314-1
Qian, 1996, Nuclear magnetic resonance solution structure of the human Hsp40 (HDJ-1) J-domain, J. Mol. Biol., 260, 224, 10.1006/jmbi.1996.0394
Ranson, 1995, Chaperonins can catalyze the reversal of early aggregation steps when a protein misfolds, J. Mol. Biol., 250, 581, 10.1006/jmbi.1995.0399
Reid, 1996, GroEL binds to and unfolds rhodanese posttranslationally, J. Biol. Chem., 271, 7212, 10.1074/jbc.271.12.7212
Robinson, 1994, Conformation of GroEL-bound α-lactalbumin probed by mass spectrometry, Nature, 372, 646, 10.1038/372646a0
Rüdiger, 1997, Interaction of Hsp70 chaperones with substrates, Nature Struct. Biol., 4, 342, 10.1038/nsb0597-342
Rüdiger, 1997, Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries, EMBO J., 16, 1501, 10.1093/emboj/16.7.1501
Rye, 1997, Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL, Nature, 388, 792, 10.1038/42047
Schröder, 1993, DnaK, DnaJ, and GrpE form a cellular chaperone machinery capable of repairing heat-induced protein damage, EMBO J., 12, 4137, 10.1002/j.1460-2075.1993.tb06097.x
Smith, 1995, Interactions between the GroE chaperonins and rhodanese. Multiple intermediates and release and rebinding, J. Biol. Chem., 270, 21517, 10.1074/jbc.270.37.21517
Sousa, 1995, The molecular basis for the recognition of misfolded glycoproteins by the UDP-Glc:glycoprotein glucosyltransferase, EMBO J., 14, 4196, 10.1002/j.1460-2075.1995.tb00093.x
Sparrer, 1997, How GroES regulates binding of non-native protein to GroEL, J. Biol. Chem., 272, 14080, 10.1074/jbc.272.22.14080
Szabo, 1994, The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system-DnaK, DnaJ and GrpE, Proc. Natl. Acad. Sci. USA, 91, 10345, 10.1073/pnas.91.22.10345
Szabo, 1996, A zinc finger-like domain of the molecular chaperone DnaJ is involved in binding to denatured protein substrates, EMBO J., 15, 408, 10.1002/j.1460-2075.1996.tb00371.x
Szyperski, 1994, NMR structure determination of the Escherichia coli DnaJ molelcular chaperone, Proc. Natl. Acad. Sci. USA, 91, 11343, 10.1073/pnas.91.24.11343
Taguchi, 1995, Chaperonin releases the substrate protein in a form with tendency to aggregate and ability to rebind to chaperonin, FEBS Lett., 359, 195, 10.1016/0014-5793(95)00041-7
Theyssen, 1996, The second step of ATP binding to DnaK induces peptide release, J. Mol. Biol., 263, 657, 10.1006/jmbi.1996.0606
Todd, 1996, Chaperonin-facilitated protein folding, Proc. Natl. Acad. Sci. USA, 93, 4030, 10.1073/pnas.93.9.4030
Wall, 1994, The NH2-terminal 108 amino acids of the Escherichia coli DnaJ protein stimulate the ATPase activity of DnaK and are sufficient for λ replication, J. Biol. Chem., 269, 5446, 10.1016/S0021-9258(17)37706-2
Walter, 1996, A thermodynamic coupling mechanism for GroEL-mediated unfolding, Proc. Natl. Acad. Sci. USA, 93, 9425, 10.1073/pnas.93.18.9425
Weissman, 1994, GroEL-mediated protein folding proceeds by multiple rounds of binding and release of nonnative forms, Cell, 78, 693, 10.1016/0092-8674(94)90533-9
Weissman, 1996, Characterization of the active intermediate of a GroEL–GroES-mediated protein folding reaction, Cell, 84, 481, 10.1016/S0092-8674(00)81293-3
Wilbanks, 1995, Solution small-angle X-ray scattering study of the molecular chaperone hsc70 and its subfragments, Biochemistry, 34, 12095, 10.1021/bi00038a002
Xu, 1997, The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex, Nature, 388, 741, 10.1038/41944
Yeh, 1997, Ligand exchange during cytochrome c folding, Nature Struct. Biol., 4, 51, 10.1038/nsb0197-51
Yifrach, 1995, Nested cooperativity in the ATPase activity of the oligomeric chaperonin GroEL, Biochemistry, 34, 5303, 10.1021/bi00016a001
Zahn, 1994, Destabilization of the complete protein secondary structure on binding to the chaperone GroEL, Nature, 368, 261, 10.1038/368261a0
Zahn, 1996, Catalysis of amide proton exchange by the molecular chaperones GroEL and SecB, Science, 271, 642, 10.1126/science.271.5249.642
Zhu, 1996, Structural analysis of substrate binding by the molecular chaperone DnaK, Science, 272, 1606, 10.1126/science.272.5268.1606