Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Gia đình Hoyle: Cuộc tìm kiếm các trạng thái ngưng tụ alpha trong hạt nhân nhẹ
Tóm tắt
Hiểu biết hiện tại của chúng tôi về cấu trúc của trạng thái Hoyle trong $$^{12}$$C và các trạng thái gần ngưỡng khác trong các hạt nhân đồng vị $$\alpha $$ được xem xét trong khuôn khổ mô hình ngưng tụ $$\alpha $$. Trạng thái Hoyle của $$^{12}$$C, đặc biệt, là một ứng cử viên cho ngưng tụ $$\alpha $$ do bán kính lớn và cấu trúc cụm $$\alpha $$. Các đặc điểm được dự đoán của các ngưng tụ hạt nhân $$\alpha $$-hạt nhân được xem xét cùng với một thảo luận về các chỉ số thực nghiệm của chúng, tập trung vào các phép đo vỡ chính xác. Hai thí nghiệm được thảo luận chi tiết, đầu tiên liên quan đến sự phân rã của $$^{12}$$C và sau đó là sự phân rã của các hạt nhân nặng hơn. Với việc thêm đầu vào lý thuyết và các thiết lập phát hiện ngày càng phức tạp, các phép đo vỡ chính xác có thể, về nguyên tắc, cung cấp cái nhìn sâu sắc về cấu trúc của các trạng thái trong các hạt nhân đồng vị $$\alpha $$. Tuy nhiên, quan niệm phổ biến rằng sự phân rã của một trạng thái ngưng tụ sẽ dẫn đến N$$\alpha $$-hạt nhân đang bị thách thức. Chúng tôi kết luận thêm rằng việc phân loại rõ ràng các trạng thái kích thích được xây dựng trên các ngưng tụ $$\alpha $$ là khó khăn, mặc dù đã có những cải tiến trong công nghệ phát hiện.
Từ khóa
#ngưng tụ alpha #trạng thái Hoyle #hạt nhân nhẹ #đo vỡ chính xác #chỉ số thực nghiệmTài liệu tham khảo
D. Jenkins, O. Kirsebom, The secret of life. Phys. World 26, 23 (2013). https://doi.org/10.1088/2058-7058/26/02/32
F. Hoyle, On nuclear reactions occuring in very hot STARS. I. The synthesis of elements from carbon to nickel. Astrophys. J. Suppl. Ser. 1, 121 (1954). https://doi.org/10.1086/190005
D.N.F. Dunbar, R.E. Pixley, W.A. Wenzel, W. Whaling, The 7.68-Mev state in C\(^{12}\). Phys. Rev. 92, 649 (1953). https://doi.org/10.1103/PhysRev.92.649
C.W. Cook, W.A. Fowler, C.C. Lauritsen, T. Lane, B\(^{12}\), C\(^{12}\) and the red giants. Phys. Rev. 107, 508 (1957). https://doi.org/10.1103/PhysRev.107.508
L.R. Hafstad, E. Teller, The alpha-particle model of the nucleus. Phys. Rev. 54, 681 (1938). https://doi.org/10.1103/PhysRev.54.681
K. Ikeda et al., The systematic structure-change into the molecule-like structures in the self-conjugate 4n nuclei. Prog. Theor. Phys. Suppl. E68, 464 (1968). https://doi.org/10.1143/PTPS.E68.464
M.H. Anderson et al., Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269, 198 (1995). https://doi.org/10.1126/science.269.5221.198
G. Röpke, A. Schnell, P. Schuck, P. Nozi‘eres, Four-particle condensate in strongly coupled fermion systems. Phys. Rev. Lett. 80, 3177 (1998). https://doi.org/10.1103/PhysRevLett.80.3177
A. Tohsaki, H. Horiuchi, P. Schuck, G. Röpke, Alpha cluster condensation in \(^{12}\)C and \(^{16}\)O. Phys. Rev. Lett. 87, 192501 (2001). https://doi.org/10.1103/PhysRevLett.87.192501
Y. Kanada En’yo, H. Horriuchi, Structure of light unstable nuclei studied with antisymmetrized molecular dynamics. Progr. Theor. Phys. 142, 205 (2001). https://doi.org/10.1143/PTPS.142.205
Y. Kanada En’yo, The structure of ground and excited states of \(^{12}\)C. Progr. Theor. Phys. 117, 655 (2007). https://doi.org/10.1088/1126-6708/2007/03/117
M. Chernykh, H. Feldmeier, T. Neff, P. von Neumann-Cosel, A. Richter, Structure of the Hoyle state in \(^{12}\)C. Phys. Rev. Lett. 98, 032501 (2007). https://doi.org/10.1103/PhysRevLett.98.226102
E. Epelbaum, H. Krebs, D. Lee, Ulf-G Meissner, Ab initio calculation of the Hoyle state. Phys. Rev. Lett. 106, 192501 (2011). https://doi.org/10.1103/PhysRevLett.106.192501
H. Marenau, Interaction of alpha-particles. Phys. Rev. C 59, 37 (1941). https://doi.org/10.1103/PhysRev.59.37
D. M. Brink. In C. Bloch (Ed.), Proceedings of the International School of Physics Enrico Fermi, Varenna, 1965, Course 36 (Academic Press, New York, 1966). p. 247
D.M. Brink, Effective interactions for Hartree–Fock calculations. Nucl. Phys. A 91, 1 (1967). https://doi.org/10.1016/0375-9474(67)90446-0
D.J. Marin-Lambarri et al., Evidence for triangular \(\cal{D}_{3h}\) symmetry in \(^{12}\)C. Phys. Rev. Lett. 113, 012502 (2014). https://doi.org/10.1103/PhysRevLett.113.012502
W.R. Zimmerman et al., Unambiguous identification of the second 2\(^+\) state in \(^{12}\)C. Phys. Rev. Lett. 110, 152502 (2013). https://doi.org/10.1103/PhysRevLett.110.069902
W. Bauhoff, H. Schultheis, R. Schultheis, Alpha cluster model and the spectrum of \(^{16}\)O. Phys. Rev. C 29, 1046 (1984). https://doi.org/10.1103/PhysRevC.29.1046
S. Marsh, W.D.M. Rae, The structure of \(^{24}\)Mg using the cranked cluster model. Phys. Lett. B 180, 185 (1986). https://doi.org/10.5652/kokusaikeizai.1986.180
A. Nakada, Y. Torizuka, Y. Horikawa, Determination of the deformation in \(^{12}\)C from electron scattering. Phys. Rev. Lett. 27, 745 (1971). https://doi.org/10.1103/PhysRevLett.27.745
A. Nakada, Y. Torizuka, Y. Horikawa, Determination of the deformation in \(^{12}\)C from electron scattering. Phys. Rev. Lett. 27, 1102 (1971). https://doi.org/10.1103/PhysRevLett.27.1102.2
I. Sick, J.S. McCarthy, Elastic electron scattering from \(^{12}\)C and \(^{16}\)O. Nucl. Phys. A 150, 631 (1970). https://doi.org/10.1016/0375-9474(70)90423-9
P. Strehl, ThH Schucan, Study of monopole transitions in \(^{12}\)C, \(^{24}\)Mg, \(^{28}\)Si, \(^{32}\)S and \(^{40}\)Ca by inelastic electron scattering. Phys. Lett. B 27, 641 (1968). https://doi.org/10.1016/0370-2693(68)90303-1
A. Tohsaki, New effective internucleon forces in microscopic \(\alpha \)-cluster model. Phys. Rev. C 49, 1814 (1994). https://doi.org/10.1103/PhysRevC.49.1814
A. Tohsaki, H. Horiuchi, P. Schuck, G. Röpke, Colloquium: status of \(\alpha \)-particle condensate structure of the Hoyle state. Rev. Mod. Phys. 89, 011002 (2017). https://doi.org/10.1103/RevModPhys.89.011002
T. Yamada, P. Schuck, Single \(\alpha \)-particle orbits and Bose–Einstein condensation in \(^{12}\)C. Eur. Phys. J. A 26, 185 (2005). https://doi.org/10.1140/epja/i2005-10168-1
H. Crannell, X. Jiang, J.T. O’Brien, D.I. Sobera, E. Offermann, Measurement of the pair transition width for the decay of the 7.654 MeV, 0\(^+\) state in \(^{12}\)C. Nucl. Phys. A 758, 399 (2005). https://doi.org/10.1016/j.nuclphysa.2005.05.072
Y. Funaki, A. Tohsaki, H. Horiuchi, P. Schuck, G. Röpke, Inelastic form factors to alpha-particle condensate states in \(^{12}\)C and \(^{16}\)O: what can we learn? Eur. Phys. J. A 28, 259 (2006). https://doi.org/10.1140/epja/i2006-10061-5
J. Carlson, S. Gandolfi, F. Pederiva, S.C. Pieper, R. Schiavilla, K.E. Schmidt, R.B. Wiringa, Quantum Monte Carlo methods for nuclear physics. Rev. Mod. Phys. 87, 1067 (2015). https://doi.org/10.1103/RevModPhys.87.1067
B. Zhou, Y. Funaki, H. Horiuchi, A. Tohsaki, Nonlocalized clustering and evolution of cluster structure in nuclei. Front. Phys. 15, 14401 (2020). https://doi.org/10.1007/s11467-019-0917-0
Tz Kokalova, N. Itagaki, W. von Oertzen, C. Wheldon, Signatures for multi-\(\alpha \)-condensed states. Phys. Rev. Lett. 96, 192502 (2006). https://doi.org/10.1103/PhysRevLett.96.192502
O.S. Kirsebom et al., Improved limit on direct \(\alpha \) decay of the Hoyle state phys. Rev. Lett. 108, 202501 (2012). https://doi.org/10.1103/PhysRevLett.108.202501
M. Itoh et al., Further improvement of the upper limit on the direct 3\(\alpha \) decay from the Hoyle state in \(^{12}\)C. Phys. Rev. Lett. 113, 102501 (2014). https://doi.org/10.1103/PhysRevLett.113.102501
R. Smith, Tz. Kokalova, C. Wheldon, J. Bishop, M. Freer, N. Curtis, D.J. Parker, New measurement of the direct 3\(\alpha \) decay from the \(^{12}\)C Hoyle state. Phys. Rev. Lett. 119, 132502 (2017). https://doi.org/10.1103/PhysRevLett.119.132502
D. Dell’Aquila, I. Lombardo, G. Verde, M. Vigilante, L. Acosta, C. Agodi, F. Cappuzzello, D. Carbone, M. Cavallaro, S. Cherubini, A. Cvetinovic, High-precision probe of the fully sequential decay width of the Hoyle state in \(^{12}\)C. Phys. Rev. Lett. 119, 132501 (2017). https://doi.org/10.1103/PhysRevLett.119.132501
T.K. Rana et al., New high precision study on the decay width of the Hoyle state in \(^{12}\)C. Phys. Lett. B 793, 130–133 (2019). https://doi.org/10.1016/j.physletb.2019.04.028
O. Kirsebom, Watching the Hoyle state fall apart. Physics 10, 103 (2017). https://doi.org/10.1103/Physics.10.103
E. Cartlidge, Experiments shed new light on how life-giving carbon is forged in stars. Phys. World (2017)
Chapter 25, Geant4 Physics Reference Manual
M. Gai, M.W. Ahmed, S.C. Stave, W.R. Zimmerman, A. Breskin, B. Bromberger, R. Chechik, V. Dangendorf, Th Delbar, R.H. France III, S.S. Henshaw, T.J. Kading, P.P. Martel, J.E.R. McDonald, P.-N. Seo, K. Tittelmeier, H.R. Weller, A.H. Young, JINST 5, 12004 (2010). https://doi.org/10.1088/1748-0221/5/12/P12004
E. Koshchiy, et al. TexAT: Texas active target detector system for experiments with rare isotope beams (2019). arXiv preprint arXiv:1906.07845
J. Bishop et al., Beta-delayed charged-particle spectroscopy using TexAT. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 964, 163773 (2020)
R.H. Dalitz, CXII. On the analysis of \(\tau \)-meson data and the nature of the \(\tau \) meson. Lond. Edinb. Dubl. Philos. Mag. 44, 1068–1080 (1953). https://doi.org/10.1080/14786441008520365
R. Smith, C. Wheldon, M. Freer, N. Curtis, T. Kokalova, S. Almaraz-Calderon, A. Aprahamian, N.I. Ashwood, M. Barr, B. Bucher, P. Copp, M. Couder, X. Fang, G. Goldring, F. Jung, S.R. Lesher, W. Lu, J.D. Malcolm, A. Roberts, W.P. Tan, V.A. Ziman, Breakup branches of Borromean beryllium-9. AIP Conference Proceedings1681, (2017). https://doi.org/10.1063/1.4932289
R. Smith, Ph.D. Thesis, University of Birmingham (2017)
M. Schulz et al., Four-particle Dalitz plots to visualize atomic break-up processes. J. Phys. B At. Mol. Opt. Phys. 40, 3091 (2007). https://doi.org/10.1088/0953-4075/40/15/009
P. Stevenson, Poster: time-dependent exploration of 3-alpha states in \(^{12}\)C. In 24th European Conference on Few-Body Problems in Physics (2019)
J. Refsgaard, H.O.U. Fynbo, O.S. Kirsebom, K. Riisager, Three-body effects in the Hoyle-state decay. Phys. Lett. B 779, 414 (2018). https://doi.org/10.1016/j.physletb.2018.02.031
S. Ishikawa, Decay and structure of the Hoyle state. Phys. Rev. C 90, 061604 (2014). https://doi.org/10.1103/PhysRevC.90.061604
R. Smith, J. Bishop, C. Wheldon, Tz. Kokalova. Theoretical approaches to the 3\(\alpha \) break-up of \(^{12}\)C. J. Phys. Conf. Ser. 1307 (2019), https://doi.org/10.1088/1742-6596/1308/1/012021
R. Smith, PeTA version 1.0, Matlab File Exchange, 70496, accessed: 06-March-2019
H. Zheng, A. Bonasera, M. Huang, S. Zhang, Decay modes of the Hoyle state in \(^{12}\)C. Phys. Lett. B 779, 460 (2018). https://doi.org/10.1016/j.physletb.2018.02.040
M. Ismail, W.M. Seif, H. El-Gebaly, On the Coulomb interaction between spherical and deformed nuclei. Phys. Lett. B 563, 53 (2003). https://doi.org/10.1016/S0370-2693(03)00600-2
T. Yamada, P. Schuck, Dilute multi-\(\alpha \) cluster states in nuclei. Phys. Rev. C 69, 214–216 (2004). https://doi.org/10.1103/PhysRevC.69.024309
K.C.W. Li et al., Characterization of the proposed cluster state candidate in \(^{16}\)O. Phys. Rev. C 95, 031302 (2017). https://doi.org/10.1103/PhysRevC.95.031302
J. Bishop, Tz Kokalova, M. Freer, L. Acosta, M. Assié, S. Bailey, G. Cardella, N. Curtis, E. De Filippo, D. Dell’Aquila, S. De Luca, L. Francalanza, B. Gnoffo, G. Lanzalone, I. Lombardo, N.S. Martorana, S. Norella, A. Pagano, E.V. Pagano, M. Papa, S. Pirrone, G. Politi, F. Rizzo, P. Russotto, L. Quattrocchi, R. Smith, I. Stefan, A. Trifirò, M. Trimarchì, G. Verde, M. Vigilante, C. Wheldon, Experimental investigation of \(\alpha \) condensation in light nuclei. Phys. Rev. C 100, 034320 (2019). https://doi.org/10.1103/PhysRevC.100.034320
M. Freer, N.M. Clarke, N. Curtis, B.R. Fulton, S.J. Hall, M.J. Leddy, J.S. Pople, G. Tungate, R.P. Ward, P.M. Simmons, W.D.M. Rae, S.P.G. Chappell, S.P. Fox, C.D. Jones, D.L. Watson, G.J. Gyapong, S.M. Singer, W.N. Catford, P.H. Regan, \(^8\)Be and \(\alpha \) decay of \(^{16}\)O. Phys. Rev. C 51, 1682 (1995). https://doi.org/10.1103/PhysRevC.51.1682
M. Freer, M.P. Nicoli, S.M. Singer, C.A. Bremner, S.P.G. Chappell, W.D.M. Rae, I. Boztosun, B.R. Fulton, D.L. Watson, B.J. Greenhalgh, G.K. Dillon, R.L. Cowin, D.C. Weisser, \(^8\)Be + \(^8\)Be decay of excited states in \(^{16}\)O. Phys. Rev. C 70, 064311 (2004). https://doi.org/10.1103/PhysRevC.70.064311
N. Curtis, S. Almaraz-Calderon, A. Aprahamian, N.I. Ashwood, M. Barr, B. Bucher, P. Copp, M. Couder, X. Fang, M. Freer, G. Goldring, F. Jung, S.R. Lesher, W. Lu, J.D. Malcolm, A. Roberts, W.P. Tan, C. Wheldon, V.A. Ziman, Investigation of the 4-\(\alpha \) linear chain state in \(^{16}\)O. Phys. Rev. C 88, 064309 (2013). PhysRevC.88.064309
N. Curtis, S. Almaraz-Calderon, A. Aprahamian, N.I. Ashwood, M. Barr, B. Bucher, P. Copp, M. Couder, X. Fang, M. Freer, G. Goldring, F. Jung, S.R. Lesher, W. Lu, J.D. Malcolm, A. Roberts, W.P. Tan, C. Wheldon, V.A. Ziman, \(^8\)Be + \(^8\)Be and \(^{12}\)C + \(\alpha \) breakup states in \(^{16}\)O populated via the \(^{13}\)C(\(^4\)He,4\(\alpha \))\(n\) reaction. Phys. Rev. C 94, 034313 (2016). https://doi.org/10.1103/PhysRevC.94.034313
M. Bruno, M. D’Agostino, M.V. Managlia, L. Morelli, G. Baiocco, F. Gulminelli, C. Frosin, S. Barlini, A. Buccola, A. Camaiani, G. Casini, M. Cicerchia, M. Cinausero, M. Degerlier, D. Fabris, F. Gramegna, G. Mantovani, T. Marchi, P. Ottanelli, G. Pasquali, S. Piantelli, S. Valdré, Four \(\alpha \)-particle decay of the excited \(^{16}\)O* quasi-projectile in the \(^{16}\)O + \(^{12}\)C reaction at 130 MeV. J. Phys. G Nucl. Part. Phys. 46, 125101 (2019). https://doi.org/10.1088/1361-6471/ab46cd
Y. Funaki, T. Yamada, H. Horiuchi, G. Röpke, P. Schuck, A. Tohsaki, Gas-like alpha-cluster states and condensates in nuclei. J. Phys. Conf. Ser. 436, 012004 (2013). https://doi.org/10.1088/1742-6596/436/1/012004
M. Itoh, T. Takahashi, T. Hayamizu, A. Oikawa, Y. Sakemi, H. Yoshida, Search for the \(\alpha \) condensed state in \(^{16}\)O. Mod. Phys. Lett. A 25, 1935 (2010). https://doi.org/10.1142/S021773231000068X
M. Barbui, K. Hagel, J. Gauthier, S. Wuenschel, R. Wada, V.Z. Goldberg, R.T. de Souza, S. Hudan, D. Fang, X.-G. Cao, J.B. Natowitz, Searching for states analogous to the Hoyle state in heavier nuclei using the thick target inverse kinematics technique. Phys. Rev. C 98, 044601 (2018). https://doi.org/10.1103/PhysRevC.98.044601
R.J. Charity, L.G. Sobotka, N.J. Robertson, D.G. Sarantites, J. Dinius, C.K. Gelbke, T. Glasmacher, D.O. Handzy, W.C. Hsi, M.J. Huang, W.G. Lynch, C.P. Montoya, G.F. Peaslee, C. Schwarz, M.B. Tsang, Prompt and sequential decay processes in the fragmentation of 40 MeV/nucleon \(^{20}\)Ne projectiles. Phys. Rev. C 52, 3126 (1995). https://doi.org/10.1103/PhysRevC.52.3126
H. Akimune, M. Fujiwara, J. Gibelin, M.N. Harakeh, L. Achouri, S. Bagchi, B. Bastin, K. Boretzky, H. Bouzomita, L. Caceres, S. Damoy, F. Delaunay, B. Fernández-Domínguez, M. Caamano, U. Garg, G.F. Grinyer, N. Kalantar-Nayestanaki, O. Kamalou, E. Khan, A. Krasznahorkay, G. Lhoutellier, S. Lukyanov, K. Mazurek, M. Najafi, J. Pancin, Y. Penionzkhevich, L. Perrot, R. Raabe, C.E. Rigollet, T. Roger, S. Sambi, H. Savajols, M. Senoville, C. Stodel, L. Suen, J.C. Thomas, J. van de Walle, M. Vandebrouck, Alpha cluster structure in \(^{56}\)Ni. J. Phys. Conf. Ser. 436, 012010 (2013). https://doi.org/10.1088/1742-6596/436/1/012010
M. Itoh et al., Candidate for the 2\(^+\) excited Hoyle state at \(\sim \) 10 MeV in \(^{12}\)C. Phys. Rev. C 84, 054308 (2011). https://doi.org/10.1103/PhysRevC.84.054308
Y. Funaki, Hoyle band and \(\alpha \) condensation in \(^{12}\)C. Phys. Rev. C 92, 021302 (2015). https://doi.org/10.1103/PhysRevC.92.021302
R. Bijker, F. Iachello, The algebraic cluster model: three-body clusters. Ann. Phys. (N. Y.) 298, 334 (2002). https://doi.org/10.1006/aphy.2002.6255
P. Schuck et al., Alpha particle clusters and their condensation in nuclear systems. Phys. Scr. 91, 123001 (2016). https://doi.org/10.1088/0031-8949/91/12/123001