The Homotopy Type of the Complement to a System of Complex Lines in ℂ2
Tóm tắt
Using the braid monodromy presentation for the fundamental group of the complement to a system of complex lines in ℂ
2, we suggest a CW model for the homotopy type of that complement that modified our previous one
$ C(\mathcal A)$
. We also discuss the minimality of this model using the discrete Morse Theory.
Tài liệu tham khảo
Dimca, A., Papadima, S.: Hypersurface complements, Milnor fibers and higher homotopy groups of arrangements. Ann. Math. 158, 473–507 (2003)
Dung, N.V., Vui, H.H.: The fundamental group of complex hyperplanes arrangements. Acta Math. Vietnam. 20, 31–41 (1995)
Dung, N.V.: Braid monodromy of complex lines arrangements. Kodai Math. J. 22, 46–55 (1999)
Dung, N.V.: A model for homotopy type of the complement. Acta Math. Vietnam. 27, 289–295 (2002)
Falk, M.: Homotopy types of line arrangements. Invent. Math. 111, 139–150 (1993)
Forman, R.: Morse theory for cell complexes. Adv. Math. 134, 90–145 (1998)
Forman, R.: A user’s guide to discrete Morse theory. Sémin. Lothar. Combi 48. Article B48c (2002)
Kozlov, D.: Combinatorial Algebraic Topology. Algorithms and Computation in Mathematics 21. Springer (2008)
Libgober, A.: On the homotopy of the complement to plane algebraic curves. J. Reine Angew. Math. 376, 103–114 (1986)
Lundell, A., Weingram, S.: The topology of CW complexes. Van Nostrand-Reinhold, New York (1969)
Orlik, P.: Complement of subspace arrangements. J. Algebr. Geom. 1, 147–156 (1992)
Randell, R.: The fundamental group of the complement of a union of complex hyperplanes. Invent. Math. 69, 103–108 (1982). Correction: Invent. Math. 80 467–468 (1985)
Randell, R.: Morse theory, Milnor fibers and minimality of hyperplane arrangements. Proc. Am. Math. Soc. 130, 2737–2743 (2002)
Salvetti, M.: Topology of the complement of real hyperplanes in ℂ N. Invent. Math. 88, 603–618 (1987)
Salvetti, M., Settepanella, S.: Combinatorial Morse theory and minimality of hyperplane arrangements. Geom. Topol. 11, 1733–1766 (2007)