The Helmholtz Operator on Higher Dimensional Möbius Strips Embedded in $${\mathbb{R}^{4}}$$

Advances in Applied Clifford Algebras - Tập 22 - Trang 745-755 - 2012
Rolf Sören Krausshar1
1Arbeitsgruppe Algebra, Fachbereich Mathematik, Technische Universität Darmstadt, Darmstadt, Germany

Tóm tắt

In this paper we present explicit formulas for the fundamental solution to the Helmholtz operator on a higher-dimensional analogue of the Möbius strip in three real variables (embedded in $${\mathbb{R}^{4}}$$ ) with values in distinct pinor bundles. Herefore we use an approach that uses classical harmonic analysis methods combined with some Clifford analysis tools and adapt it to this special geometry. The fundamental solution is described in terms of generalizations of the Weierstrass $${\wp}$$ -function that are adapted to the context of these geometries. As our main result we present an analytic integral representation formula to express the solutions of the inhomogeneous time-independent Klein-Gordon problem on Möbius strips.

Tài liệu tham khảo

Becker K., Becker M., Schwarz J.: String Theory and m-Theory. Cambridge University Press, New York (2007) Blau M., Dabrowski L.: Pin Structures on Manifolds Quotiented by Discrete Groups. J. Geom. Phys. 6(1), 143–157 (1989) L. Bonora, F. Ferrari Ruffino, and R. Savelli, Revisiting Pinors, Spinors and Orientability. SISSA 47, 2009, EP-FM, arXiv: 0907.4334v2 Burgess C. P., Morris T. R.: Open Superstring a la Poyakov. Nucl. Phys. B 291, 285–333 (1987) Constales D., Krausshar R. S.: Multi-Periodic Eigensolutions to the Dirac Operator and Applications to the Generalized Helmholtz Equation on Flat Cylinders and on the n-Torus. Mathematical Methods in the Applied Sciences 32, 2050–2070 (2009) Davydov A. S.: Quantum Mechanics. 2nd Edition. Pergamon, Oxford (1976) K. Gürlebeck and W. Sprössig, Quaternionic and Clifford Mathcalculus for Physicists and Engineers. John Wiley & Sons, Chichester-New York, 1997. R. C. Kirby and L. R. Taylor, Pin Structures on Low-Dimensional Manifolds. London Math. Soc. Lecture Note Ser. 151, Cambridge Univ. Press, Cambridge, 1990, 177–242. R. S. Krausshar, Generalized Analytic Automorphic Forms in Hypercomplex Spaces. Frontiers in Mathematics, Birkhäuser, Basel, 2004. R. S. Krausshar, On the Klein-Gordon Equation on Some Examples of Conformally Flat Spin 3-Manifolds. In Recent Advances in Computational Mathematics, T. E. Simos, Ed., Springer, Dordrecht-Heidelberg-London-New York, 2011, 209–226. R. S. Krausshar, Dirac and Laplace Operators on Some Non-Orientable Conformally Flat Manifolds. To appear. Preprint on arXiv:1102.4251 R. S. Krausshar, M. M. Rodrigues, and N. Vieira, The Schrödinger Semigroup on Some Flat and Non Flat Manifolds. To appear. Preprint on arXiv:1103.0971 Krausshar R. S., Ryan J.: Some Conformally Flat Spin Manifolds, Dirac Operators and Automorphic Forms. J. Math. Anal. Appl. 325(1), 359–376 (2007) Kravchenko V. V., Castillo P. R.: On the Kernel of the Klein-Gordon Operator. Zeitschrift für Analysis und ihre Anwendungen 17(2), 261–265 (1998) Kuiper N. H.: On Conformally Flat Spaces in the Large. Ann. Math. 50(2), 916–924 (1949) Lawson H. B. Jr., Michelson M.-L.: Spin Geometry. Princeton University Press, Princeton, NJ (1989) C. Müller, Spherical Harmonics. Lecture Notes in Mathematics 17, Springer, New York, 1966. W. Nef Die unwesentlichen Singularitäten der regulären Funktionen einer Quaternionenvariablen. Comment. Math. Helv. 16 (1943-44), 284–304. P. Petersen, Riemannian Geometry. Graduate Texts in Mathematics 171, Springer Verlag, New York, 1997. Porteousn I.: Clifford Algebras and Classical Groups. Cambridge University Press, Cambridge (1995) Ryan J.: Cauchy-Green Type Formulae in Clifford Analysis. Transactions of the American Mathematical Society 347(4), 1331–1341 (1995) Sakurai J. J.: Advanced Quantum Mechanics. Addison Wesley, New York (1967) Zhenyuan Xu, Helmholtz Equations and Boundary Value Problems. In Partial Differential Equations with Complex Analysis, Pitman Res. Notes, Math. Ser. 262 Longman Sci. Tech., Harlow, 1992, 204–214.