The Hard-To-Close Window of T-Type Calcium Channels

Trends in Molecular Medicine - Tập 25 - Trang 571-584 - 2019
Anna Visa1, Soni Shaikh1, Lía Alza1, Judit Herreros1, Carles Cantí1
1Laboratory of Calcium Cell Signaling, IRBLleida-Universitat de Lleida, Rovira Roure, 80, 25198-Lleida, Spain

Tài liệu tham khảo

Ertel, 2000, Nomenclature of voltage-gated calcium channels, Neuron, 25, 533, 10.1016/S0896-6273(00)81057-0 Hering, 2018, Calcium channel gating, Pflugers Arch., 470, 1291, 10.1007/s00424-018-2163-7 Chevalier, 2006, T-Type Cav3.3 calcium channels produce spontaneous low-threshold action potentials and intracellular calcium oscillations, Eur. J. Neurosci., 23, 2321, 10.1111/j.1460-9568.2006.04761.x Capiod, 2011, Cell proliferation, calcium influx and calcium channels, Biochimie, 93, 2075, 10.1016/j.biochi.2011.07.015 Capiod, 2013, The need for calcium channels in cell proliferation, Recent Pat. Anticancer. Drug Discov., 8, 4, 10.2174/1574892811308010004 Jahnsen, 1984, Ionic basis for the electro-responsiveness and oscillatory properties of guinea-pig thalamic neurones in vitro, J. Physiol., 349, 227, 10.1113/jphysiol.1984.sp015154 Carbone, 1984, A low voltage-activated calcium conductance in embryonic chick sensory neurons, Biophys. J., 46, 413, 10.1016/S0006-3495(84)84037-0 Nilius, 1986, Possible functional significance of a novel type of cardiac Ca channel, Biomed. Biochim. Acta, 45, K37 Miwa, 2011, T-Type calcium channel as a new therapeutic target for tremor, Cerebellum, 10, 563, 10.1007/s12311-011-0277-y Chen, 2014, The role of T-type calcium channel genes in absence seizures, Front. Neurol., 5, 45, 10.3389/fneur.2014.00045 Coutelier, 2015, A recurrent mutation in CACNA1G alters Cav3.1 T-type calcium-channel conduction and causes autosomal-dominant cerebellar ataxia, Am. J. Hum. Genet., 97, 726, 10.1016/j.ajhg.2015.09.007 Morino, 2015, A mutation in the low voltage-gated calcium channel CACNA1G alters the physiological properties of the channel, causing spinocerebellar ataxia, Mol. Brain, 8, 89, 10.1186/s13041-015-0180-4 Kimura, 2017, SCA42 mutation analysis in a case series of Japanese patients with spinocerebellar ataxia, J. Hum. Genet., 62, 857, 10.1038/jhg.2017.51 Powell, 2014, Low threshold T-type calcium channels as targets for novel epilepsy treatments, Br. J. Clin. Pharmacol., 77, 729, 10.1111/bcp.12205 Marger, 2011, T-Type calcium channels contribute to colonic hypersensitivity in a rat model of irritable bowel syndrome, Proc. Natl. Acad. Sci. U. S. A., 108, 11268, 10.1073/pnas.1100869108 Scanzi, 2016, Colonic overexpression of the T-type calcium channel Cav3. 2 in a mouse model of visceral hypersensitivity and in irritable bowel syndrome patients, Neurogastroenterol. Motil., 28, 1632, 10.1111/nmo.12860 Lin, 2016, Expression patterns of T-type Cav3.2 channel and insulin-like growth factor-1 receptor in dorsal root ganglion neurons of mice after sciatic nerve axotomy, Neuroreport, 27, 1174, 10.1097/WNR.0000000000000676 Sekiguchi, 2016, Therapeutic potential of RQ-00311651, a novel T-type Ca2+ channel blocker, in distinct rodent models for neuropathic and visceral pain, Pain, 157, 1655, 10.1097/j.pain.0000000000000565 Li, 2017, Dorsal root ganglion neurons become hyperexcitable and increase expression of voltage-gated T-type calcium channels (Cav3.2) in paclitaxel-induced peripheral neuropathy, Pain, 158, 417, 10.1097/j.pain.0000000000000774 Weiss, 2019, T-type calcium channels: from molecule to therapeutic opportunities, Int. J. Biochem. Cell Biol., 108, 34, 10.1016/j.biocel.2019.01.008 Richard, 1992, Differential expression of voltage-gated Ca2+-currents in cultivated aortic myocytes, Biochim. Biophys. Acta, 1160, 95, 10.1016/0167-4838(92)90042-C Kuga, 1996, Cell cycle-dependent expression of L- and T-type Ca2+ currents in rat aortic smooth muscle cells in primary culture, Circ. Res., 79, 14, 10.1161/01.RES.79.1.14 Rodman, 2005, Low-voltage-activated (T-type) calcium channels control proliferation of human pulmonary artery myocytes, Circ. Res., 96, 864, 10.1161/01.RES.0000163066.07472.ff Tzeng, 2012, The Cav3.1 T-type calcium channel is required for neointimal formation in response to vascular injury in mice, Cardiovasc. Res., 96, 533, 10.1093/cvr/cvs257 Guo, 1998, Cell cycle-related changes in the voltage-gated Ca2+ currents in cultured newborn rat ventricular myocytes, J. Mol. Cell Cardiol., 30, 1095, 10.1006/jmcc.1998.0675 Li, 2005, T-type Ca2+ channels are involved in high glucose-induced rat neonatal cardiomyocyte proliferation, Pediatr. Res., 57, 550, 10.1203/01.PDR.0000155756.89681.3C Oguri, 2010, Involvement of CaV3.1 T-type calcium channels in cell proliferation in mouse preadipocytes, Am. J. Physiol. Cell Physiol., 298, C1414, 10.1152/ajpcell.00488.2009 Urrego, 2014, Potassium channels in cell cycle and cell proliferation, Philos. Trans. R. Soc. Lond. B Biol. Sci., 369, 10.1098/rstb.2013.0094 Nakayama, 2009, α1G-dependent T-type Ca2+ current antagonizes cardiac hypertrophy through a NOS3-dependent mechanism in mice, J. Clin. Invest., 119, 3787, 10.1172/JCI39724 Asmara, 2017, A T-type channel–calmodulin complex triggers αCaMKII activation, Mol. Brain, 10, 37, 10.1186/s13041-017-0317-8 Panner, 2005, Variation of T-type calcium channel protein expression affects cell division of cultured tumor cells, Cell Calcium, 37, 105, 10.1016/j.ceca.2004.07.002 Taylor, 2008, Selective blockade of T-type Ca2+ channels suppresses human breast cancer cell proliferation, Cancer Lett., 267, 116, 10.1016/j.canlet.2008.03.032 Li, 2011, Blockade of T-type Ca2+ channels inhibits human ovarian cancer cell proliferation, Cancer Invest., 29, 339, 10.3109/07357907.2011.568565 Das, 2012, Functional expression of voltage-gated calcium channels in human melanoma, Pigment Cell Melanoma Res., 25, 200, 10.1111/j.1755-148X.2012.00978.x Ranzato, 2012, Epigallocatechin-3-gallate induces mesothelioma cell death via H2O2-dependent T-type Ca2+ channel opening, J. Cell Mol. Med., 16, 2667, 10.1111/j.1582-4934.2012.01584.x Ranzato, 2014, Epigallocatechin-3-gallate elicits Ca2+ spike in MCF-7 breast cancer cells: essential role of Cav3.2 channels, Cell Calcium, 56, 285, 10.1016/j.ceca.2014.09.002 Negri, 2018, Molecular targets of epigallocatechin-gallate (EGCG): a special focus on signal transduction and cancer, Nutrients, 10, 1936, 10.3390/nu10121936 Ragsdale, 1996, Common molecular determinants of local anesthetic, antiarrhythmic, and anticonvulsant block of voltage-gated Na+ channels, Proc. Natl. Acad. Sci. U. S. A., 93, 9270, 10.1073/pnas.93.17.9270 Freeze, 2006, State-dependent verapamil block of the cloned human Cav3.1 T-type Ca2+ channel, Mol. Pharmacol., 70, 718, 10.1124/mol.106.023473 Hille, 1977, Local anesthetics: hydrophilic and hydrophobic pathways for the drug–receptor reaction, J. Gen. Physiol., 69, 497, 10.1085/jgp.69.4.497 Hondeghem, 1977, Time- and voltage-dependent interactions of antiarrhythmic drugs with cardiac sodium channels, Biochim. Biophys. Acta, 472, 373, 10.1016/0304-4157(77)90003-X Godfraind, 2017, Discovery and development of calcium channel blockers, Front. Pharmacol., 8, 286, 10.3389/fphar.2017.00286 Santi, 2002, Differential inhibition of T-type calcium channels by neuroleptics, J. Neurosci, 22, 396, 10.1523/JNEUROSCI.22-02-00396.2002 Chuang, 1998, Inhibition of T-type voltage-gated calcium channels by a new scorpion toxin, Nat. Neurosci., 1, 668, 10.1038/3669 Ohkubo, 2010, Tarantula toxin ProTx-I differentiates between human T-type voltage-gated Ca2+ channels Cav3.1 and Cav3.2, J. Pharmacol. Sci., 112, 452, 10.1254/jphs.09356FP Chemin, 2014, Modulation of T-type calcium channels by bioactive lipids, Pflugers Arch., 466, 689, 10.1007/s00424-014-1467-5 Uebele, 2009, Positive allosteric interaction of structurally diverse T-type calcium channel antagonists, Cell Biochem. Biophys., 55, 81, 10.1007/s12013-009-9057-4 Choe, 2011, TTA-P2 is a potent and selective blocker of T-type calcium channels in rat sensory neurons and a novel antinociceptive agent, Mol. Pharmacol., 80, 900, 10.1124/mol.111.073205 Xie, 2010 Sallán, 2018, T-Type Ca 2+ channels: T for targetable, Cancer Res., 78, 603, 10.1158/0008-5472.CAN-17-3061 Clozel, 1997, Discovery and main pharmacological properties of mibefradil (Ro 40-5967), the first selective T-type calcium channel blocker, J. Hypertens. Suppl., 15, S17, 10.1097/00004872-199715055-00004 Brogden, 1997, Mibefradil. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in the management of hypertension and angina pectoris, Drugs, 54, 774, 10.2165/00003495-199754050-00010 Alpert, 1997, Antianginal and anti-ischemic effects of mibefradil in the treatment of patients with chronic stable angina pectoris, Am. J. Cardiol., 80, 20C, 10.1016/S0002-9149(97)00566-3 Noll, 1998, Comparative pharmacological properties among calcium channel blockers: T-channel versus L-channel blockade, Cardiology, 89, 10, 10.1159/000047274 Huang, 2004, NNC 55-0396 (1S,2S)-2-(2-(N-[(3-benzimidazol-2-yl)propyl]-N-methylamino)ethyl)-6-fluoro-1,2,3,4-tetrahydro-1-isopropyl-2-naphtyl cyclopropanecarboxylate dihydrochloride]: a new selective inhibitor of T-type calcium channels, J. Pharmacol. Exp. Ther., 309, 193, 10.1124/jpet.103.060814 Bezprozvanny, 1995, Voltage-dependent blockade of diverse types of voltage-gated Ca2+ channels expressed in Xenopus oocytes by the Ca2+ channel antagonist mibefradil (Ro 40-5967), Mol. Pharmacol., 48, 540 Jiménez, 2000, Determinants of voltage-dependent inactivation affect mibefradil block of calcium channels, Neuropharmacology, 39, 1, 10.1016/S0028-3908(99)00153-7 Martin, 2000, Mibefradil block of cloned T-type calcium channels, J. Pharmacol. Exp. Ther., 295, 302 Li, 2005, Towards selective antagonists of T-type calcium channels: design, characterization and potential applications of NNC 55-0396, Cardiovasc. Rev., 23, 173, 10.1111/j.1527-3466.2005.tb00164.x Kuryshev, 2014, Evaluating state dependence and subtype selectivity of calcium channel modulators in automated electrophysiology assays, Assay Drug Dev. Technol., 12, 110, 10.1089/adt.2013.552 Yang, 2013, Membrane potential and cancer progression, Front. Physiol., 4, 185, 10.3389/fphys.2013.00185 Lee, 2006, Actions of mibefradil, efonidipine and nifedipine block of recombinant T- and L-type Ca2+ channels with distinct inhibitory mechanisms, Pharmacology, 78, 11, 10.1159/000094900 Gomora, 2000, Effect of mibefradil on voltage-dependent gating and kinetics of T-type Ca2+ channels in cortisol-secreting cells, J. Pharmacol. Exp. Ther., 292, 96 Todorovic, 1998, Pharmacological properties of T-type Ca2+ current in adult rat sensory neurons: effects of anticonvulsant and anesthetic agents, J. Neurophysiol., 79, 240, 10.1152/jn.1998.79.1.240 Perchenet, 2000, Pharmacological properties of Cav3.2, a low voltage-activated Ca2+ channel cloned from human heart, Naunyn Schmiedebergs Arch. Pharmacol., 361, 590, 10.1007/s002100000238 Lee, 2004, 3,4-Dihydroquinazoline derivatives as novel selective T-type Ca2+ channel blockers, Bioorg. Med. Chem. Lett., 14, 3379, 10.1016/j.bmcl.2004.04.090 Lee, 2006, Growth inhibition of human cancer cells in vitro by T-type calcium channel blockers, Bioorg. Med. Chem. Lett., 16, 5014, 10.1016/j.bmcl.2006.07.046 Heo, 2008, T-type Ca2+ channel blockers suppress the growth of human cancer cells, Bioorg. Med. Chem. Lett., 18, 3899, 10.1016/j.bmcl.2008.06.034 Kang, 2012, In vivo evaluation of oral anti-tumoral effect of 3,4-dihydroquinazoline derivative on solid tumor, Bioorg. Med. Chem. Lett., 22, 1198, 10.1016/j.bmcl.2011.11.083 M’Dahoma, 2016, Effect of the T-type channel blocker KYS-05090S in mouse models of acute and neuropathic pain, Pflugers Arch., 468, 193, 10.1007/s00424-015-1733-1 Jang, 2013, In vitro cytotoxicity on human ovarian cancer cells by T-type calcium channel blockers, Bioorg. Med. Chem. Lett., 23, 6656, 10.1016/j.bmcl.2013.10.049 Choi, 2014, Inhibition of cellular proliferation and induction of apoptosis in human lung adenocarcinoma A549 cells by T-type calcium channel antagonist, Bioorg. Med. Chem. Lett., 24, 1565, 10.1016/j.bmcl.2014.01.071 Kim, 2017, Synthesis and biological evaluation of fluoro-substituted 3,4-dihydroquinazoline derivatives for cytotoxic and analgesic effects, Bioorg. Med. Chem., 25, 4656, 10.1016/j.bmc.2017.07.010 Elmaci, 2018, Targeting the cellular schizophrenia. Likely employment of the antipsychotic agent pimozide in treatment of refractory cancers and glioblastoma, Crit. Rev. Oncol. Hematol., 128, 96, 10.1016/j.critrevonc.2018.06.004 Nilius, 1997, Inhibition by mibefradil, a novel calcium channel antagonist, of Ca2+- and volume-activated Cl− channels in macrovascular endothelial cells, Br. J. Pharmacol., 121, 547, 10.1038/sj.bjp.0701140 Potocnik, 2000, Effects of mibefradil and nifedipine on arteriolar myogenic responsiveness and intracellular Ca2+, Br. J. Pharmacol., 131, 1065, 10.1038/sj.bjp.0703650 Nebe, 2004, Induction of apoptosis by the calcium antagonist mibefradil correlates with depolarization of the membrane potential and decreased integrin expression in human lens epithelial cells, Graefes Arch. Clin. Exp. Ophthalmol., 242, 597, 10.1007/s00417-004-0886-y Niklasson, 2017, Membrane-depolarizing channel blockers induce selective glioma cell death by impairing nutrient transport and unfolded protein/amino acid responses, Cancer Res., 77, 1741, 10.1158/0008-5472.CAN-16-2274 Mehrke, 1994, The Ca++-channel blocker Ro 40-5967 blocks differently T-type and L-type Ca++ channels, J. Pharmacol. Exp. Ther., 271, 1483 Lacinová, 1995, Interaction of Ro 40-5967 and verapamil with the stably expressed alpha 1-subunit of the cardiac L-type calcium channel, J. Pharmacol. Exp. Ther., 274, 54 Lotshaw, 2001, Role of membrane depolarization and T-type Ca2+ channels in angiotensin II and K+ stimulated aldosterone secretion, Mol. Cell. Endocrinol., 175, 157, 10.1016/S0303-7207(01)00384-7 Hong, 2012, The T-type Ca2+ channel inhibitor mibefradil inhibits voltage-dependent K+ channels in rabbit coronary arterial smooth muscle cells, J. Pharmacol. Sci., 120, 196, 10.1254/jphs.12104FP Yoo, 2008, Facilitation of Ca2+-activated K+ channels (IKCa1) by mibefradil in B lymphocytes, Pflugers Arch., 456, 549, 10.1007/s00424-007-0438-5 Perchenet, 2000, Characterization of mibefradil block of the human heart delayed rectifier hKv1.5, J. Pharmacol. Exp. Ther., 295, 771 Chouabe, 2000, Effects of calcium channel blockers on cloned cardiac K+ channels IKr and IKs, Therapie, 55, 195 Liu, 1999, Mibefradil (Ro 40-5967) inhibits several Ca2+ and K+ currents in human fusion-competent myoblasts, Br. J. Pharmacol., 126, 245, 10.1038/sj.bjp.0702321 Gomora, 1999, Mibefradil potently blocks ATP-activated K+ channels in adrenal cells, Mol. Pharmacol., 56, 1192, 10.1124/mol.56.6.1192 Gómez-Lagunas, 2017, Gating modulation of the tumor-related Kv10.1 channel by mibefradil, J. Cell Physiol., 232, 2019, 10.1002/jcp.25448 Schäfer, 2016, Mibefradil represents a new class of benzimidazole TRPM7 channel agonists, Pflugers Arch., 468, 623, 10.1007/s00424-015-1772-7 Zhu, 2017, Impact of gabapentin on neuronal high voltage-activated Ca2+ channel properties of injured-side axotomized and adjacent uninjured dorsal root ganglions in a rat model of spinal nerve ligation, Exp. Ther. Med., 13, 851, 10.3892/etm.2017.4071 Phan, 2017, Voltage-gated calcium channels: novel targets for cancer therapy, Oncol. Lett., 14, 2059, 10.3892/ol.2017.6457 Eberhard, 1995, Effects of mibefradil on intracellular Ca2+ release in cultured rat cardiac fibroblasts and human platelets, Naunyn Schmiedebergs Arch. Pharmacol., 353, 94, 10.1007/BF00168921 Huang, 2015, T-Type calcium channel antagonists, mibefradil and NNC-55-0396 inhibit cell proliferation and induce cell apoptosis in leukemia cell lines, J. Exp. Clin. Cancer Res., 34, 27, 10.1186/s13046-015-0171-4 Asati, 2016, PI3K/Akt/mTOR and Ras/Raf/MEK/ERK signaling pathways inhibitors as anticancer agents: structural and pharmacological perspectives, Eur. J. Med. Chem., 109, 314, 10.1016/j.ejmech.2016.01.012 Shou, 2015, Nuclear factor of activated T cells in cancer development and treatment, Cancer Lett., 361, 174, 10.1016/j.canlet.2015.03.005 Zhao, 2016, Triptolide induces protective autophagy through activation of the CaMKKβ–AMPK signaling pathway in prostate cancer cells, Oncotarget, 7, 5366, 10.18632/oncotarget.6783 Seo, 2007, Discovery of potent T-type calcium channel blocker, Bioorg. Med. Chem. Lett., 17, 5740, 10.1016/j.bmcl.2007.08.070 Rim, 2012, T-Type Ca2+ channel blocker, KYS05047 induces G1 phase cell cycle arrest by decreasing intracellular Ca2+ levels in human lung adenocarcinoma A549 cells, Bioorg. Med. Chem. Lett., 22, 7123, 10.1016/j.bmcl.2012.09.076 Rim, 2014, T-Type Ca2+ channel blocker, KYS05090 induces autophagy and apoptosis in A549 cells through inhibiting glucose uptake, Molecules, 19, 9864, 10.3390/molecules19079864 Kraus, 2010, In vitro characterization of T-TYPE CALCIUM CHANNEL ANTAGONIST TTA-A2 and in vivo effects on arousal in mice, J. Pharmacol. Exp. Ther., 335, 409, 10.1124/jpet.110.171058 Sakkaki, 2016, Blockade of T-type calcium channels prevents tonic–clonic seizures in a maximal electroshock seizure model, Neuropharmacology, 101, 320, 10.1016/j.neuropharm.2015.09.032 Francois, 2013, State-dependent properties of a new T-type calcium channel blocker enhance CaV3.2 selectivity and support analgesic effects, Pain, 154, 283, 10.1016/j.pain.2012.10.023 Das, 2013, T-Type calcium channel blockers inhibit autophagy and promote apoptosis of malignant melanoma cells, Pigment Cell Melanoma Res., 26, 874, 10.1111/pcmr.12155 Dziegielewska, 2014, T-Type Ca2+ channel inhibition induces p53-dependent cell growth arrest and apoptosis through activation of p38–MAPK in colon cancer cells, Mol. Cancer Res., 12, 348, 10.1158/1541-7786.MCR-13-0485 Valerie, 2013, Inhibition of T-type calcium channels disrupts Akt signaling and promotes apoptosis in glioblastoma cells, Biochem. Pharmacol., 85, 888, 10.1016/j.bcp.2012.12.017 Ohkubo, 2012, T-Type voltage-activated calcium channel Cav3.1, but not Cav3.2, is involved in the inhibition of proliferation and apoptosis in MCF-7 human breast cancer cells, Int. J. Oncol., 41, 267 Kania, 2015, Calcium homeostasis and ER stress in control of autophagy in cancer cells, Biomed. Res. Int., 2015, 352794, 10.1155/2015/352794 Tringham, 2012, T-Type calcium channel blockers that attenuate thalamic burst firing and suppress absence seizures, Sci. Transl. Med., 4, 121ra19, 10.1126/scitranslmed.3003120 Gomora, 2001, Block of cloned human T-type calcium channels by succinimide antiepileptic drugs, Mol. Pharmacol., 60, 1121, 10.1124/mol.60.5.1121 Chemin, 2001, Direct inhibition of T-type calcium channels by the endogenous cannabinoid anandamide, EMBO J., 20, 7033, 10.1093/emboj/20.24.7033 Chemin, 2002, Specific contribution of human T-type calcium channel isotypes (α1G, α1H and α1I) to neuronal excitability, J. Physiol., 540, 3, 10.1113/jphysiol.2001.013269 Cantí, 2001, Evidence for two concentration-dependent processes for β-subunit effects on α1 B calcium channels, Biophys. J., 81, 1439, 10.1016/S0006-3495(01)75799-2 Yasuda, 2004, Overexpressed Cavβ3 inhibits N-type Cav2.2 calcium channel currents through a hyperpolarizing shift of ultra-slow and closed-state inactivation, J. Gen. Physiol., 123, 401, 10.1085/jgp.200308967 Morita, 2002, T-Channel-like pharmacological properties of high voltage-activated, nifedipine-insensitive Ca2+ currents in the rat terminal mesenteric artery, Br. J. Pharmacol., 137, 467, 10.1038/sj.bjp.0704892 Wan, 2005, CACNA1A mutations causing episodic and progressive ataxia alter channel trafficking and kinetics, Neurology, 64, 2090, 10.1212/01.WNL.0000167409.59089.C0 Byun, 2016, In vitro synergistic anticancer activity of the combination of T-type calcium channel blocker and chemotherapeutic agent in A549 cells, Bioorg. Med. Chem. Lett., 26, 1073, 10.1016/j.bmcl.2015.12.010 Monteil, 2000, Molecular and functional properties of the human α1G subunit that forms T-type calcium channels, J. Biol. Chem., 275, 6090, 10.1074/jbc.275.9.6090 Perez-Reyes, 2009, Molecular pharmacology of human Cav3.2 T-type Ca2+ channels: block by antihypertensives, antiarrhythmics, and their analogs, J. Pharmacol. Exp. Ther., 328, 621, 10.1124/jpet.108.145672 McDonough, 1998, Mibefradil inhibition of T-type calcium channels in cerebellar purkinje neurons, Mol. Pharmacol., 54, 1080, 10.1124/mol.54.6.1080 Obradovic, 2014, CaV3.2 T-type calcium channels in peripheral sensory neurons are important for mibefradil-induced reversal of hyperalgesia and allodynia in rats with painful diabetic neuropathy, PLoS One, 9, e91467, 10.1371/journal.pone.0091467 Wu, 2003, Cav3.1 (α1G) T-type Ca2+ channels mediate vaso-occlusion of sickled erythrocytes in lung microcirculation, Circ. Res., 93, 346, 10.1161/01.RES.0000087148.75363.8F Zhang, 2017, Targetable T-type calcium channels drive glioblastoma, Cancer Res., 77, 3479, 10.1158/0008-5472.CAN-16-2347 Karmažínová, 2010, Measurement of cellular excitability by whole cell patch clamp technique, Physiol. Res. Acad. Sci. Bohemoslovaca, 59, S1 Iftinca, 2009, Regulation of neuronal T-type calcium channels, Trends Pharmacol. Sci., 30, 32, 10.1016/j.tips.2008.10.004