The Hard-To-Close Window of T-Type Calcium Channels
Tài liệu tham khảo
Ertel, 2000, Nomenclature of voltage-gated calcium channels, Neuron, 25, 533, 10.1016/S0896-6273(00)81057-0
Hering, 2018, Calcium channel gating, Pflugers Arch., 470, 1291, 10.1007/s00424-018-2163-7
Chevalier, 2006, T-Type Cav3.3 calcium channels produce spontaneous low-threshold action potentials and intracellular calcium oscillations, Eur. J. Neurosci., 23, 2321, 10.1111/j.1460-9568.2006.04761.x
Capiod, 2011, Cell proliferation, calcium influx and calcium channels, Biochimie, 93, 2075, 10.1016/j.biochi.2011.07.015
Capiod, 2013, The need for calcium channels in cell proliferation, Recent Pat. Anticancer. Drug Discov., 8, 4, 10.2174/1574892811308010004
Jahnsen, 1984, Ionic basis for the electro-responsiveness and oscillatory properties of guinea-pig thalamic neurones in vitro, J. Physiol., 349, 227, 10.1113/jphysiol.1984.sp015154
Carbone, 1984, A low voltage-activated calcium conductance in embryonic chick sensory neurons, Biophys. J., 46, 413, 10.1016/S0006-3495(84)84037-0
Nilius, 1986, Possible functional significance of a novel type of cardiac Ca channel, Biomed. Biochim. Acta, 45, K37
Miwa, 2011, T-Type calcium channel as a new therapeutic target for tremor, Cerebellum, 10, 563, 10.1007/s12311-011-0277-y
Chen, 2014, The role of T-type calcium channel genes in absence seizures, Front. Neurol., 5, 45, 10.3389/fneur.2014.00045
Coutelier, 2015, A recurrent mutation in CACNA1G alters Cav3.1 T-type calcium-channel conduction and causes autosomal-dominant cerebellar ataxia, Am. J. Hum. Genet., 97, 726, 10.1016/j.ajhg.2015.09.007
Morino, 2015, A mutation in the low voltage-gated calcium channel CACNA1G alters the physiological properties of the channel, causing spinocerebellar ataxia, Mol. Brain, 8, 89, 10.1186/s13041-015-0180-4
Kimura, 2017, SCA42 mutation analysis in a case series of Japanese patients with spinocerebellar ataxia, J. Hum. Genet., 62, 857, 10.1038/jhg.2017.51
Powell, 2014, Low threshold T-type calcium channels as targets for novel epilepsy treatments, Br. J. Clin. Pharmacol., 77, 729, 10.1111/bcp.12205
Marger, 2011, T-Type calcium channels contribute to colonic hypersensitivity in a rat model of irritable bowel syndrome, Proc. Natl. Acad. Sci. U. S. A., 108, 11268, 10.1073/pnas.1100869108
Scanzi, 2016, Colonic overexpression of the T-type calcium channel Cav3. 2 in a mouse model of visceral hypersensitivity and in irritable bowel syndrome patients, Neurogastroenterol. Motil., 28, 1632, 10.1111/nmo.12860
Lin, 2016, Expression patterns of T-type Cav3.2 channel and insulin-like growth factor-1 receptor in dorsal root ganglion neurons of mice after sciatic nerve axotomy, Neuroreport, 27, 1174, 10.1097/WNR.0000000000000676
Sekiguchi, 2016, Therapeutic potential of RQ-00311651, a novel T-type Ca2+ channel blocker, in distinct rodent models for neuropathic and visceral pain, Pain, 157, 1655, 10.1097/j.pain.0000000000000565
Li, 2017, Dorsal root ganglion neurons become hyperexcitable and increase expression of voltage-gated T-type calcium channels (Cav3.2) in paclitaxel-induced peripheral neuropathy, Pain, 158, 417, 10.1097/j.pain.0000000000000774
Weiss, 2019, T-type calcium channels: from molecule to therapeutic opportunities, Int. J. Biochem. Cell Biol., 108, 34, 10.1016/j.biocel.2019.01.008
Richard, 1992, Differential expression of voltage-gated Ca2+-currents in cultivated aortic myocytes, Biochim. Biophys. Acta, 1160, 95, 10.1016/0167-4838(92)90042-C
Kuga, 1996, Cell cycle-dependent expression of L- and T-type Ca2+ currents in rat aortic smooth muscle cells in primary culture, Circ. Res., 79, 14, 10.1161/01.RES.79.1.14
Rodman, 2005, Low-voltage-activated (T-type) calcium channels control proliferation of human pulmonary artery myocytes, Circ. Res., 96, 864, 10.1161/01.RES.0000163066.07472.ff
Tzeng, 2012, The Cav3.1 T-type calcium channel is required for neointimal formation in response to vascular injury in mice, Cardiovasc. Res., 96, 533, 10.1093/cvr/cvs257
Guo, 1998, Cell cycle-related changes in the voltage-gated Ca2+ currents in cultured newborn rat ventricular myocytes, J. Mol. Cell Cardiol., 30, 1095, 10.1006/jmcc.1998.0675
Li, 2005, T-type Ca2+ channels are involved in high glucose-induced rat neonatal cardiomyocyte proliferation, Pediatr. Res., 57, 550, 10.1203/01.PDR.0000155756.89681.3C
Oguri, 2010, Involvement of CaV3.1 T-type calcium channels in cell proliferation in mouse preadipocytes, Am. J. Physiol. Cell Physiol., 298, C1414, 10.1152/ajpcell.00488.2009
Urrego, 2014, Potassium channels in cell cycle and cell proliferation, Philos. Trans. R. Soc. Lond. B Biol. Sci., 369, 10.1098/rstb.2013.0094
Nakayama, 2009, α1G-dependent T-type Ca2+ current antagonizes cardiac hypertrophy through a NOS3-dependent mechanism in mice, J. Clin. Invest., 119, 3787, 10.1172/JCI39724
Asmara, 2017, A T-type channel–calmodulin complex triggers αCaMKII activation, Mol. Brain, 10, 37, 10.1186/s13041-017-0317-8
Panner, 2005, Variation of T-type calcium channel protein expression affects cell division of cultured tumor cells, Cell Calcium, 37, 105, 10.1016/j.ceca.2004.07.002
Taylor, 2008, Selective blockade of T-type Ca2+ channels suppresses human breast cancer cell proliferation, Cancer Lett., 267, 116, 10.1016/j.canlet.2008.03.032
Li, 2011, Blockade of T-type Ca2+ channels inhibits human ovarian cancer cell proliferation, Cancer Invest., 29, 339, 10.3109/07357907.2011.568565
Das, 2012, Functional expression of voltage-gated calcium channels in human melanoma, Pigment Cell Melanoma Res., 25, 200, 10.1111/j.1755-148X.2012.00978.x
Ranzato, 2012, Epigallocatechin-3-gallate induces mesothelioma cell death via H2O2-dependent T-type Ca2+ channel opening, J. Cell Mol. Med., 16, 2667, 10.1111/j.1582-4934.2012.01584.x
Ranzato, 2014, Epigallocatechin-3-gallate elicits Ca2+ spike in MCF-7 breast cancer cells: essential role of Cav3.2 channels, Cell Calcium, 56, 285, 10.1016/j.ceca.2014.09.002
Negri, 2018, Molecular targets of epigallocatechin-gallate (EGCG): a special focus on signal transduction and cancer, Nutrients, 10, 1936, 10.3390/nu10121936
Ragsdale, 1996, Common molecular determinants of local anesthetic, antiarrhythmic, and anticonvulsant block of voltage-gated Na+ channels, Proc. Natl. Acad. Sci. U. S. A., 93, 9270, 10.1073/pnas.93.17.9270
Freeze, 2006, State-dependent verapamil block of the cloned human Cav3.1 T-type Ca2+ channel, Mol. Pharmacol., 70, 718, 10.1124/mol.106.023473
Hille, 1977, Local anesthetics: hydrophilic and hydrophobic pathways for the drug–receptor reaction, J. Gen. Physiol., 69, 497, 10.1085/jgp.69.4.497
Hondeghem, 1977, Time- and voltage-dependent interactions of antiarrhythmic drugs with cardiac sodium channels, Biochim. Biophys. Acta, 472, 373, 10.1016/0304-4157(77)90003-X
Godfraind, 2017, Discovery and development of calcium channel blockers, Front. Pharmacol., 8, 286, 10.3389/fphar.2017.00286
Santi, 2002, Differential inhibition of T-type calcium channels by neuroleptics, J. Neurosci, 22, 396, 10.1523/JNEUROSCI.22-02-00396.2002
Chuang, 1998, Inhibition of T-type voltage-gated calcium channels by a new scorpion toxin, Nat. Neurosci., 1, 668, 10.1038/3669
Ohkubo, 2010, Tarantula toxin ProTx-I differentiates between human T-type voltage-gated Ca2+ channels Cav3.1 and Cav3.2, J. Pharmacol. Sci., 112, 452, 10.1254/jphs.09356FP
Chemin, 2014, Modulation of T-type calcium channels by bioactive lipids, Pflugers Arch., 466, 689, 10.1007/s00424-014-1467-5
Uebele, 2009, Positive allosteric interaction of structurally diverse T-type calcium channel antagonists, Cell Biochem. Biophys., 55, 81, 10.1007/s12013-009-9057-4
Choe, 2011, TTA-P2 is a potent and selective blocker of T-type calcium channels in rat sensory neurons and a novel antinociceptive agent, Mol. Pharmacol., 80, 900, 10.1124/mol.111.073205
Xie, 2010
Sallán, 2018, T-Type Ca 2+ channels: T for targetable, Cancer Res., 78, 603, 10.1158/0008-5472.CAN-17-3061
Clozel, 1997, Discovery and main pharmacological properties of mibefradil (Ro 40-5967), the first selective T-type calcium channel blocker, J. Hypertens. Suppl., 15, S17, 10.1097/00004872-199715055-00004
Brogden, 1997, Mibefradil. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in the management of hypertension and angina pectoris, Drugs, 54, 774, 10.2165/00003495-199754050-00010
Alpert, 1997, Antianginal and anti-ischemic effects of mibefradil in the treatment of patients with chronic stable angina pectoris, Am. J. Cardiol., 80, 20C, 10.1016/S0002-9149(97)00566-3
Noll, 1998, Comparative pharmacological properties among calcium channel blockers: T-channel versus L-channel blockade, Cardiology, 89, 10, 10.1159/000047274
Huang, 2004, NNC 55-0396 (1S,2S)-2-(2-(N-[(3-benzimidazol-2-yl)propyl]-N-methylamino)ethyl)-6-fluoro-1,2,3,4-tetrahydro-1-isopropyl-2-naphtyl cyclopropanecarboxylate dihydrochloride]: a new selective inhibitor of T-type calcium channels, J. Pharmacol. Exp. Ther., 309, 193, 10.1124/jpet.103.060814
Bezprozvanny, 1995, Voltage-dependent blockade of diverse types of voltage-gated Ca2+ channels expressed in Xenopus oocytes by the Ca2+ channel antagonist mibefradil (Ro 40-5967), Mol. Pharmacol., 48, 540
Jiménez, 2000, Determinants of voltage-dependent inactivation affect mibefradil block of calcium channels, Neuropharmacology, 39, 1, 10.1016/S0028-3908(99)00153-7
Martin, 2000, Mibefradil block of cloned T-type calcium channels, J. Pharmacol. Exp. Ther., 295, 302
Li, 2005, Towards selective antagonists of T-type calcium channels: design, characterization and potential applications of NNC 55-0396, Cardiovasc. Rev., 23, 173, 10.1111/j.1527-3466.2005.tb00164.x
Kuryshev, 2014, Evaluating state dependence and subtype selectivity of calcium channel modulators in automated electrophysiology assays, Assay Drug Dev. Technol., 12, 110, 10.1089/adt.2013.552
Yang, 2013, Membrane potential and cancer progression, Front. Physiol., 4, 185, 10.3389/fphys.2013.00185
Lee, 2006, Actions of mibefradil, efonidipine and nifedipine block of recombinant T- and L-type Ca2+ channels with distinct inhibitory mechanisms, Pharmacology, 78, 11, 10.1159/000094900
Gomora, 2000, Effect of mibefradil on voltage-dependent gating and kinetics of T-type Ca2+ channels in cortisol-secreting cells, J. Pharmacol. Exp. Ther., 292, 96
Todorovic, 1998, Pharmacological properties of T-type Ca2+ current in adult rat sensory neurons: effects of anticonvulsant and anesthetic agents, J. Neurophysiol., 79, 240, 10.1152/jn.1998.79.1.240
Perchenet, 2000, Pharmacological properties of Cav3.2, a low voltage-activated Ca2+ channel cloned from human heart, Naunyn Schmiedebergs Arch. Pharmacol., 361, 590, 10.1007/s002100000238
Lee, 2004, 3,4-Dihydroquinazoline derivatives as novel selective T-type Ca2+ channel blockers, Bioorg. Med. Chem. Lett., 14, 3379, 10.1016/j.bmcl.2004.04.090
Lee, 2006, Growth inhibition of human cancer cells in vitro by T-type calcium channel blockers, Bioorg. Med. Chem. Lett., 16, 5014, 10.1016/j.bmcl.2006.07.046
Heo, 2008, T-type Ca2+ channel blockers suppress the growth of human cancer cells, Bioorg. Med. Chem. Lett., 18, 3899, 10.1016/j.bmcl.2008.06.034
Kang, 2012, In vivo evaluation of oral anti-tumoral effect of 3,4-dihydroquinazoline derivative on solid tumor, Bioorg. Med. Chem. Lett., 22, 1198, 10.1016/j.bmcl.2011.11.083
M’Dahoma, 2016, Effect of the T-type channel blocker KYS-05090S in mouse models of acute and neuropathic pain, Pflugers Arch., 468, 193, 10.1007/s00424-015-1733-1
Jang, 2013, In vitro cytotoxicity on human ovarian cancer cells by T-type calcium channel blockers, Bioorg. Med. Chem. Lett., 23, 6656, 10.1016/j.bmcl.2013.10.049
Choi, 2014, Inhibition of cellular proliferation and induction of apoptosis in human lung adenocarcinoma A549 cells by T-type calcium channel antagonist, Bioorg. Med. Chem. Lett., 24, 1565, 10.1016/j.bmcl.2014.01.071
Kim, 2017, Synthesis and biological evaluation of fluoro-substituted 3,4-dihydroquinazoline derivatives for cytotoxic and analgesic effects, Bioorg. Med. Chem., 25, 4656, 10.1016/j.bmc.2017.07.010
Elmaci, 2018, Targeting the cellular schizophrenia. Likely employment of the antipsychotic agent pimozide in treatment of refractory cancers and glioblastoma, Crit. Rev. Oncol. Hematol., 128, 96, 10.1016/j.critrevonc.2018.06.004
Nilius, 1997, Inhibition by mibefradil, a novel calcium channel antagonist, of Ca2+- and volume-activated Cl− channels in macrovascular endothelial cells, Br. J. Pharmacol., 121, 547, 10.1038/sj.bjp.0701140
Potocnik, 2000, Effects of mibefradil and nifedipine on arteriolar myogenic responsiveness and intracellular Ca2+, Br. J. Pharmacol., 131, 1065, 10.1038/sj.bjp.0703650
Nebe, 2004, Induction of apoptosis by the calcium antagonist mibefradil correlates with depolarization of the membrane potential and decreased integrin expression in human lens epithelial cells, Graefes Arch. Clin. Exp. Ophthalmol., 242, 597, 10.1007/s00417-004-0886-y
Niklasson, 2017, Membrane-depolarizing channel blockers induce selective glioma cell death by impairing nutrient transport and unfolded protein/amino acid responses, Cancer Res., 77, 1741, 10.1158/0008-5472.CAN-16-2274
Mehrke, 1994, The Ca++-channel blocker Ro 40-5967 blocks differently T-type and L-type Ca++ channels, J. Pharmacol. Exp. Ther., 271, 1483
Lacinová, 1995, Interaction of Ro 40-5967 and verapamil with the stably expressed alpha 1-subunit of the cardiac L-type calcium channel, J. Pharmacol. Exp. Ther., 274, 54
Lotshaw, 2001, Role of membrane depolarization and T-type Ca2+ channels in angiotensin II and K+ stimulated aldosterone secretion, Mol. Cell. Endocrinol., 175, 157, 10.1016/S0303-7207(01)00384-7
Hong, 2012, The T-type Ca2+ channel inhibitor mibefradil inhibits voltage-dependent K+ channels in rabbit coronary arterial smooth muscle cells, J. Pharmacol. Sci., 120, 196, 10.1254/jphs.12104FP
Yoo, 2008, Facilitation of Ca2+-activated K+ channels (IKCa1) by mibefradil in B lymphocytes, Pflugers Arch., 456, 549, 10.1007/s00424-007-0438-5
Perchenet, 2000, Characterization of mibefradil block of the human heart delayed rectifier hKv1.5, J. Pharmacol. Exp. Ther., 295, 771
Chouabe, 2000, Effects of calcium channel blockers on cloned cardiac K+ channels IKr and IKs, Therapie, 55, 195
Liu, 1999, Mibefradil (Ro 40-5967) inhibits several Ca2+ and K+ currents in human fusion-competent myoblasts, Br. J. Pharmacol., 126, 245, 10.1038/sj.bjp.0702321
Gomora, 1999, Mibefradil potently blocks ATP-activated K+ channels in adrenal cells, Mol. Pharmacol., 56, 1192, 10.1124/mol.56.6.1192
Gómez-Lagunas, 2017, Gating modulation of the tumor-related Kv10.1 channel by mibefradil, J. Cell Physiol., 232, 2019, 10.1002/jcp.25448
Schäfer, 2016, Mibefradil represents a new class of benzimidazole TRPM7 channel agonists, Pflugers Arch., 468, 623, 10.1007/s00424-015-1772-7
Zhu, 2017, Impact of gabapentin on neuronal high voltage-activated Ca2+ channel properties of injured-side axotomized and adjacent uninjured dorsal root ganglions in a rat model of spinal nerve ligation, Exp. Ther. Med., 13, 851, 10.3892/etm.2017.4071
Phan, 2017, Voltage-gated calcium channels: novel targets for cancer therapy, Oncol. Lett., 14, 2059, 10.3892/ol.2017.6457
Eberhard, 1995, Effects of mibefradil on intracellular Ca2+ release in cultured rat cardiac fibroblasts and human platelets, Naunyn Schmiedebergs Arch. Pharmacol., 353, 94, 10.1007/BF00168921
Huang, 2015, T-Type calcium channel antagonists, mibefradil and NNC-55-0396 inhibit cell proliferation and induce cell apoptosis in leukemia cell lines, J. Exp. Clin. Cancer Res., 34, 27, 10.1186/s13046-015-0171-4
Asati, 2016, PI3K/Akt/mTOR and Ras/Raf/MEK/ERK signaling pathways inhibitors as anticancer agents: structural and pharmacological perspectives, Eur. J. Med. Chem., 109, 314, 10.1016/j.ejmech.2016.01.012
Shou, 2015, Nuclear factor of activated T cells in cancer development and treatment, Cancer Lett., 361, 174, 10.1016/j.canlet.2015.03.005
Zhao, 2016, Triptolide induces protective autophagy through activation of the CaMKKβ–AMPK signaling pathway in prostate cancer cells, Oncotarget, 7, 5366, 10.18632/oncotarget.6783
Seo, 2007, Discovery of potent T-type calcium channel blocker, Bioorg. Med. Chem. Lett., 17, 5740, 10.1016/j.bmcl.2007.08.070
Rim, 2012, T-Type Ca2+ channel blocker, KYS05047 induces G1 phase cell cycle arrest by decreasing intracellular Ca2+ levels in human lung adenocarcinoma A549 cells, Bioorg. Med. Chem. Lett., 22, 7123, 10.1016/j.bmcl.2012.09.076
Rim, 2014, T-Type Ca2+ channel blocker, KYS05090 induces autophagy and apoptosis in A549 cells through inhibiting glucose uptake, Molecules, 19, 9864, 10.3390/molecules19079864
Kraus, 2010, In vitro characterization of T-TYPE CALCIUM CHANNEL ANTAGONIST TTA-A2 and in vivo effects on arousal in mice, J. Pharmacol. Exp. Ther., 335, 409, 10.1124/jpet.110.171058
Sakkaki, 2016, Blockade of T-type calcium channels prevents tonic–clonic seizures in a maximal electroshock seizure model, Neuropharmacology, 101, 320, 10.1016/j.neuropharm.2015.09.032
Francois, 2013, State-dependent properties of a new T-type calcium channel blocker enhance CaV3.2 selectivity and support analgesic effects, Pain, 154, 283, 10.1016/j.pain.2012.10.023
Das, 2013, T-Type calcium channel blockers inhibit autophagy and promote apoptosis of malignant melanoma cells, Pigment Cell Melanoma Res., 26, 874, 10.1111/pcmr.12155
Dziegielewska, 2014, T-Type Ca2+ channel inhibition induces p53-dependent cell growth arrest and apoptosis through activation of p38–MAPK in colon cancer cells, Mol. Cancer Res., 12, 348, 10.1158/1541-7786.MCR-13-0485
Valerie, 2013, Inhibition of T-type calcium channels disrupts Akt signaling and promotes apoptosis in glioblastoma cells, Biochem. Pharmacol., 85, 888, 10.1016/j.bcp.2012.12.017
Ohkubo, 2012, T-Type voltage-activated calcium channel Cav3.1, but not Cav3.2, is involved in the inhibition of proliferation and apoptosis in MCF-7 human breast cancer cells, Int. J. Oncol., 41, 267
Kania, 2015, Calcium homeostasis and ER stress in control of autophagy in cancer cells, Biomed. Res. Int., 2015, 352794, 10.1155/2015/352794
Tringham, 2012, T-Type calcium channel blockers that attenuate thalamic burst firing and suppress absence seizures, Sci. Transl. Med., 4, 121ra19, 10.1126/scitranslmed.3003120
Gomora, 2001, Block of cloned human T-type calcium channels by succinimide antiepileptic drugs, Mol. Pharmacol., 60, 1121, 10.1124/mol.60.5.1121
Chemin, 2001, Direct inhibition of T-type calcium channels by the endogenous cannabinoid anandamide, EMBO J., 20, 7033, 10.1093/emboj/20.24.7033
Chemin, 2002, Specific contribution of human T-type calcium channel isotypes (α1G, α1H and α1I) to neuronal excitability, J. Physiol., 540, 3, 10.1113/jphysiol.2001.013269
Cantí, 2001, Evidence for two concentration-dependent processes for β-subunit effects on α1 B calcium channels, Biophys. J., 81, 1439, 10.1016/S0006-3495(01)75799-2
Yasuda, 2004, Overexpressed Cavβ3 inhibits N-type Cav2.2 calcium channel currents through a hyperpolarizing shift of ultra-slow and closed-state inactivation, J. Gen. Physiol., 123, 401, 10.1085/jgp.200308967
Morita, 2002, T-Channel-like pharmacological properties of high voltage-activated, nifedipine-insensitive Ca2+ currents in the rat terminal mesenteric artery, Br. J. Pharmacol., 137, 467, 10.1038/sj.bjp.0704892
Wan, 2005, CACNA1A mutations causing episodic and progressive ataxia alter channel trafficking and kinetics, Neurology, 64, 2090, 10.1212/01.WNL.0000167409.59089.C0
Byun, 2016, In vitro synergistic anticancer activity of the combination of T-type calcium channel blocker and chemotherapeutic agent in A549 cells, Bioorg. Med. Chem. Lett., 26, 1073, 10.1016/j.bmcl.2015.12.010
Monteil, 2000, Molecular and functional properties of the human α1G subunit that forms T-type calcium channels, J. Biol. Chem., 275, 6090, 10.1074/jbc.275.9.6090
Perez-Reyes, 2009, Molecular pharmacology of human Cav3.2 T-type Ca2+ channels: block by antihypertensives, antiarrhythmics, and their analogs, J. Pharmacol. Exp. Ther., 328, 621, 10.1124/jpet.108.145672
McDonough, 1998, Mibefradil inhibition of T-type calcium channels in cerebellar purkinje neurons, Mol. Pharmacol., 54, 1080, 10.1124/mol.54.6.1080
Obradovic, 2014, CaV3.2 T-type calcium channels in peripheral sensory neurons are important for mibefradil-induced reversal of hyperalgesia and allodynia in rats with painful diabetic neuropathy, PLoS One, 9, e91467, 10.1371/journal.pone.0091467
Wu, 2003, Cav3.1 (α1G) T-type Ca2+ channels mediate vaso-occlusion of sickled erythrocytes in lung microcirculation, Circ. Res., 93, 346, 10.1161/01.RES.0000087148.75363.8F
Zhang, 2017, Targetable T-type calcium channels drive glioblastoma, Cancer Res., 77, 3479, 10.1158/0008-5472.CAN-16-2347
Karmažínová, 2010, Measurement of cellular excitability by whole cell patch clamp technique, Physiol. Res. Acad. Sci. Bohemoslovaca, 59, S1
Iftinca, 2009, Regulation of neuronal T-type calcium channels, Trends Pharmacol. Sci., 30, 32, 10.1016/j.tips.2008.10.004