The HITRAN 2008 molecular spectroscopic database

Journal of Quantitative Spectroscopy and Radiative Transfer - Tập 110 Số 9-10 - Trang 533-572 - 2009
Laurence S. Rothman1, Iouli E. Gordon1, A. Barbé2, D. Chris Benner3, P. F. Bernath4, Manfred Birk5, Vincent Boudon6, Linda R. Brown7, A. Campargue8, J.P. Champion6, K. Chance9, L. H. Coudert10, V. Dana11, V. Malathy Devi3, Sophie Fally12, J.‐M. Flaud10, Robert R. Gamache13, Alan S. Goldman14, D. Jacquemart15, Isabelle Kleiner10, N. Lacome15, W. J. Lafferty16, J.-Y. Mandin17, S. T. Massie18, С.Н. Михайленко19, Christopher E. Miller9, N. Moazzen‐Ahmadi20, O. V. Naumenko19, A.V. Nikitin21, J. Orphal22, V.I. Perevalov23, J. Demaison24, Adriana Predoi−Cross25, C. P. Rinsland26, M. Rotger27, Marie Šimečková28, Mary Ann H. Smith29, Keeyoon Sung30, S.A. Tashkun23, Jonathan Tennyson28, R. A. Toth7, Ann Carine Vandaele31, J. Vander Auwera32
1AMP - Atomic and Molecular Physics Division [Cambridge] (Cambridge, MA02138, USA - United States)
2Université de Reims-Champagne-Ardenne, Groupe de Spectrométrie Moléculaire et Atmosphérique, 51062 Reims, France
3The College of William and Mary, Department of Physics, Williamsburg, VA 23187, USA
4Department of Chemistry and Biochemistry [Norfolk] (Norfolk, VA 23529 - United States)
5DLR – Remote Sensing Technology Institute, Wessling, Germany
6CNRS-Université de Bourgogne, Institut Carnot de Bourgogne, 21078 Dijon, France
7California Institute of Technology, Jet Propulsion Laboratory, Pasadena, CA 91109, USA
8LAME-LIPhy - LAsers, Molécules et Environnement (LIPhy 140 Av. de la physique, CS 47100, 38058 Grenoble Cedex 9 - France)
9Harvard-Smithsonian Center for Astrophysics, Atomic and Molecular Physics Division, Cambridge, MA 02138, USA
10LISA (UMR_7583) - Laboratoire Interuniversitaire des Systèmes Atmosphériques ( Université Paris-Est Créteil Val de Marne - Bât. Lamarck case postale 7059 - Faculté des Sciences et Technologie 61 avenue du Général de Gaulle 94010 Créteil Cedex - France)
11LPMAA - Laboratoire de Physique Moleculaire pour l'Atmosphere et l'Astrophysique (France)
12Service de Chimie Quantique et Photophysique (Université Libre de Bruxelles, CP 160/09, 50 Avenue F.D. Roosevelt, B-1050 Bruxelles - Belgium)
13Department of Environmental, Earth, and Atmospheric Sciences [Lowell] (265 Riverside Street, Lowell MA 01854 - United States)
14University of Denver, Department of Physics, Denver, CO 80208, USA
15LADIR - Laboratoire de Dynamique Interactions et Réactivité (Bât. F - Esc. 74 - 3ème étage 4, place Jussieu 75005 PARIS - France)
16National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
17UPMC Univ Paris 06, UMR 7092, Laboratoire de Physique Moléculaire et Applications, 75252 Paris, FRANCE
18National Center for Atmospheric Research, Boulder, CO 80307, USA
19IAO - V.E. Zuev Institute of Atmospheric Optics (1, Academician Zuev square, 634021, Tomsk, Russia - Russia)
20CNRS et Universités Paris Est et Paris 7, Laboratoire Inter-Universitaire des Systèmes Atmosphériques, 94010 Créteil, France
21Institute of Atmospheric Optics, Tomsk 634055, RUSSIA
22IMK - Institute for Meteorology and Climate Research (Karlsruher Institut für Technologie, Postfach 3640, 76021 Karlsruhe - Germany)
23LTS - Laboratory of Theoretical Spectroscopy [Tomsk] (1, Academician Zuev square, Tomsk 634021 - Russia)
24CNRS et Universités Paris Est et Paris
25Department of Physics [Ottawa] (Ontario K1N 6N5, Canada - Canada)
26Atmospheric Sciences Division [Hampton] (United States)
27Oxford National Institute for Health Research Biomedical Research Centre/Molecular Diagnostic Centre (Oxford National Institute for Health Research Biomedical Research Centre/Molecular Diagnostic Centre University of Oxford, Oxford, United Kingdom - United Kingdom)
28UPMC Université Paris 06, UMR 7075, Laboratoire de Dynamique, Interactions et Réactivité, 75252 Paris, France
29NASA Langley Research Center, Atmospheric Sciences, Hampton VA 23681, USA
30JPL - Jet Propulsion Laboratory (4800 Oak Grove Drive, Pasadena, CA 91109-8099, USA - United States)
31BIRA-IASB - Belgian Institute for Space Aeronomy / Institut d'Aéronomie Spatiale de Belgique (Ringlaan-3-Avenue Circulaire B-1180 Brussels - Belgium)
32Spectroscopie de l'atmosphère, Service de Chimie Quantique et Photophysique (Université Libre de Bruxelles 50 avenue F. D. Roosevelt B-1050 Brussels - Belgium)

Tóm tắt

Từ khóa


Tài liệu tham khảo

Rothman, 2005, The HITRAN 2004 molecular spectroscopic database, JQSRT, 96, 139, 10.1016/j.jqsrt.2004.10.008

Waters, 2006, The earth observing system microwave limb sounder (EOS MLS) on the Aura Satellite, IEEE Trans Geosci Remote Sensing, 44, 1075, 10.1109/TGRS.2006.873771

Beer, 2006, TES on the aura mission: scientific objectives, measurements, and analysis overview, IEEE Trans Geosci Remote Sensing, 44, 1102, 10.1109/TGRS.2005.863716

Fischer, 2008, MIPAS: an instrument for atmospheric and climate research, Atmos Chem Phys, 8, 2151, 10.5194/acp-8-2151-2008

Bernath, 2005, Atmospheric chemistry experiment (ACE): mission overview, Geophys Res Lett, 32, 5, 10.1029/2005GL022386

Aumann, 2003, AIRS/AMSU/HSB on the aqua mission: design, science objectives, data products, and processing systems, IEEE Trans Geosci Remote Sensing, 41, 253, 10.1109/TGRS.2002.808356

Clerbaux, 2007, The IASI/MetOp1 mission: first observations and highlights of its potential contribution to GMES2, Space Res Today, 168, 19, 10.1016/S0045-8732(07)80046-5

Crisp, 2004, The orbiting carbon observatory (OCO) mission, Adv Space Res, 34, 700, 10.1016/j.asr.2003.08.062

Yokomizo, 2008, Greenhouse gases observing SATellite (GOSAT) ground systems, Fujitsu Sci Techn J, 44, 410

Hartmann, 2008

Shiba, 1993, Detection of water vapor in T Tauri stars, Astrophys J Suppl Ser, 89, 299, 10.1086/191850

Tinetti, 2007, Water vapour in the atmosphere of a transiting extrasolar planet, Nature, 448, 169, 10.1038/nature06002

Toth RA. Linelists of water vapor parameters from 500 to 8000cm−1. See: 〈http://mark4sun.jpl.nasa.gov/data/spec/〉.

Coudert, 1999, Line frequency and line intensity analyses of water vapour, Mol Phys, 96, 941, 10.1080/00268979909483034

Coudert, 2008, The H216O molecule: line position and line intensity analyses up to the second triad, J Mol Spectrosc, 251, 339, 10.1016/j.jms.2008.03.021

Lodi, 2008, A line list of allowed and forbidden rotational transition intensities for water, JQSRT, 109, 1219, 10.1016/j.jqsrt.2007.09.015

Barber, 2006, A high-accuracy computed water line list, Mon Not R Astron Soc, 368, 1087, 10.1111/j.1365-2966.2006.10184.x

Jenouvrier, 2007, Fourier transform measurements of water vapor line parameters in the 4200–6600cm−1 region, JQSRT, 105, 326, 10.1016/j.jqsrt.2006.11.007

Mikhailenko, 2007, Weak water absorption lines around 1.455 and 1.66μm by CW-CRDS, J Mol Spectrosc, 244, 170, 10.1016/j.jms.2007.05.013

Lodi, 2008, A new ab initio ground-state dipole moment surface for the water molecule, J Chem Phys, 128, 044304, 10.1063/1.2817606

Tolchenov, 2008, Water line parameters from refitted spectra constrained by empirical upper state levels: study of the 9500–14500cm−1 region, JQSRT, 109, 559, 10.1016/j.jqsrt.2007.08.001

Schermaul, 2001, The water vapor spectrum in the region 8600–15000cm−1: experimental and theoretical studies for a new spectral line database: I. Laboratory measurements, J Mol Spectrosc, 208, 32, 10.1006/jmsp.2001.8373

Schermaul, 2002, Weak line water vapor spectra in the region 13200–15000cm−1, J Mol Spectrosc, 211, 169, 10.1006/jmsp.2001.8498

Brown, 2002, Empirical line parameters of H216O near 0.94μm: positions, intensities and air-broadening coefficients, J Mol Spectrosc, 212, 57, 10.1006/jmsp.2002.8515

Tolchenov, 2005, Water vapour line assignments in the 9250–26000cm−1 frequency range, J Mol Spectrosc, 233, 68, 10.1016/j.jms.2005.05.015

Coheur, 2002, New water vapor line parameters in the 26000–13000cm−1 region, JQSRT, 74, 493, 10.1016/S0022-4073(01)00269-2

Tanaka, 2005, Fourier transform absorption spectra of H218O and H217O in the 3ν+δ and 4ν polyad region, J Mol Spectrosc, 234, 1, 10.1016/j.jms.2005.07.007

Chevillard, 1987, H218O line positions and intensities between 9500 and 11500cm−1. The (041), (220), (121), (300), (201), (102), and (003) interacting states, Can J Phys, 65, 777, 10.1139/p87-114

Tanaka, 2002, Absorption spectrum of H218O in the 12400–14520cm−1 range, J Mol Spectrosc, 216, 77, 10.1006/jmsp.2002.8670

Voronin, 2007, HDO absorption spectrum above 11500cm−1: assignment and dynamics, J Mol Spectrosc, 244, 87, 10.1016/j.jms.2007.03.008

Bach, 2005, Line parameters of HDO from high-resolution Fourier transform spectroscopy in the 11500–23000cm−1 spectral region, J Mol Spectrosc, 232, 341, 10.1016/j.jms.2005.04.018

Gordon, 2007, Current updates of the water-vapor line list in HITRAN: a new “Diet” for air-broadened half-widths, JQSRT, 108, 389, 10.1016/j.jqsrt.2007.06.009

Cazzoli, 2007, Experimental and theoretical investigation on pressure-broadening and pressure-shifting of the 22.2GHz line of water, JQSRT, 105, 438, 10.1016/j.jqsrt.2006.11.003

Durry, 2005, Pressure-broadening coefficients and line strengths of H2O near 1.39μm: application to the in situ sensing of the middle atmosphere with balloonborne diode lasers, JQSRT, 94, 387, 10.1016/j.jqsrt.2004.09.033

Liu, 2007, Experimental study of H2O spectroscopic parameters in the near-IR (6940–7440cm−1) for gas sensing applications at elevated temperature, JQSRT, 103, 565, 10.1016/j.jqsrt.2006.07.008

Liu, 2007, Measurements of spectral parameters of water-vapour transitions near 1388 and 1345nm for accurate simulation of high-pressure absorption spectra, Meas Sci Technol, 1185, 10.1088/0957-0233/18/5/004

Seta, 2008, Pressure broadening coefficients of the water vapor lines at 556.936 and 752.033GHz, JQSRT, 109, 144, 10.1016/j.jqsrt.2007.06.004

Golubiatnikov, 2008, Pressure shift and broadening of 110–101 water vapor lines by atmosphere gases, JQSRT, 109, 1828, 10.1016/j.jqsrt.2007.12.006

Toth, 2005, Measurements and analysis (using empirical functions for widths) of air- and self-broadening parameters of H2O, JQSRT, 94, 1, 10.1016/j.jqsrt.2004.08.041

Cazzoli, 2008, Pressure-broadening in the THz frequency region: the 1.113THz line of water, JQSRT, 109, 1563, 10.1016/j.jqsrt.2007.11.003

Koshelev, 2007, Broadening and shifting of the 321-, 325- and 380-GHz lines of water vapor by pressure of atmospheric gases, J Mol Spectrosc, 241, 101, 10.1016/j.jms.2006.11.005

Ibrahim, 2008, Line parameters of H2O around 0.8μm studied by tuneable diode laser spectroscopy, JQSRT, 109, 2523, 10.1016/j.jqsrt.2008.04.008

Lisak, 2004, An accurate comparison of lineshape models on H2O lines in the spectral region around 3μm, J Mol Spectrosc, 227, 162, 10.1016/j.jms.2004.06.006

Cazzoli, 2008, Pressure-broadening of water lines in the THz frequency region: improvements and confirmations for spectroscopic databases. Part I, JQSRT, 109, 2820, 10.1016/j.jqsrt.2008.07.012

Bruno, 2002, Self-, Nitrogen-, and Oxygen-broadening coefficient measurements in the ν1 band of H2O using a difference frequency generation spectrometer at 3μm, J Mol Spectrosc, 215, 244, 10.1006/jmsp.2002.8652

Gamache RR, Laraia A. N2-, O2-, and air-broadened half-widths, their temperature dependence, and line shifts for the rotation band of H216O. J Mol Spectrosc 2009, submitted.

Lynch, 1998, N2 and O2 induced halfwidths and line shifts of water vapor transitions in the (301)←(000) and (221)←(000) bands, JQSRT, 59, 595, 10.1016/S0022-4073(97)00142-8

Antony, 2007, Self-broadening of water vapor transitions via the complex Robert–Bonamy theory, JQSRT, 105, 148, 10.1016/j.jqsrt.2006.10.005

Antony, 2007, Self-broadened half-widths and self-induced line shifts for water vapor transitions in the 3.2–17.76μm spectral region via complex Robert–Bonamy theory, J Mol Spectrosc, 243, 113, 10.1016/j.jms.2006.12.003

Gamache, 2005, Lineshape parameters for water vapor in the 3.2–17.76μm region for atmospheric applications, J Mol Spectrosc, 229, 9, 10.1016/j.jms.2004.08.004

Toth, 2006, Line strengths of 12C16O2: 4550–7000cm−1, J Mol Spectrosc, 239, 221, 10.1016/j.jms.2006.08.001

Toth, 2006, Self-broadened widths and shifts of 12C16O2: 4750–7000cm−1, J Mol Spectrosc, 239, 243, 10.1016/j.jms.2006.08.003

Toth, 2007, Line positions and strengths of 16O12C18O, 18O12C18O and 17O12C18O between 2200 and 7000cm−1, J Mol Spectrosc, 243, 43, 10.1016/j.jms.2007.03.005

Toth, 2007, Air-broadened halfwidth and pressure shift coefficients of 12C16O2 bands: 4750–7000cm−1, J Mol Spectrosc, 246, 133, 10.1016/j.jms.2007.09.005

Malathy Devi, 2007, Line mixing and speed dependence in CO2 at 6348cm−1: positions, intensities, and air- and self-broadening derived with constrained multispectrum analysis, J Mol Spectrosc, 242, 90, 10.1016/j.jms.2007.02.018

Devi, 2007, Line mixing and speed dependence in CO2 at 6227.9cm−1: constrained multispectrum analysis of intensities and line shapes in the 30013←00001 band, J Mol Spectrosc, 245, 52, 10.1016/j.jms.2007.05.015

Toth, 2008, Spectroscopic database of CO2 line parameters: 4300–7000cm−1, JQSRT, 109, 906, 10.1016/j.jqsrt.2007.12.004

Toth, 2008, Line strengths of 16O13C16O, 16O13C18O, 16O13C17O and 18O13C18O between 2200 and 6800cm−1, J Mol Spectrosc, 251, 64, 10.1016/j.jms.2008.01.009

Ding, 2004, High sensitivity CW-cavity ringdown and Fourier transform absorption spectroscopies of 13CO2, J Mol Spectrosc, 226, 146, 10.1016/j.jms.2004.03.009

Majcherova, 2005, High-sensitivity CW-cavity ringdown spectroscopy of 12CO2 near 1.5μm, J Mol Spectrosc, 230, 1, 10.1016/j.jms.2004.09.011

Perevalov, 2008, New CW-CRDS measurements and global modeling of 12C16O2 absolute line intensities in the 1.6μm region, J Mol Spectrosc, 252, 190, 10.1016/j.jms.2008.08.006

Perevalov, 2008, High sensitivity CW-CRDS spectroscopy of 12C16O2, 16O12C17O and 16O12C18O between 5851 and 7045cm−1: line positions analysis and critical review of the current databases, J Mol Spectrosc, 252, 143, 10.1016/j.jms.2008.06.012

Perevalov, 2008, Global modeling of 13C16O2 absolute line intensities from CW-CRDS and FTS measurements in the 1.6 and 2.0μm regions, JQSRT, 109, 2009, 10.1016/j.jqsrt.2008.02.008

Perevalov, 2007, Global effective Hamiltonians of 16O13C17O and 16O13C18O improved from CW-CRDS observations in the 5900–7000cm−1 region, J Mol Spectrosc, 241, 90, 10.1016/j.jms.2006.11.003

Perevalov, 2008, A (nearly) complete experimental linelist for 13C16O2, 16O13C18O, 16O13C17O, 13C18O2 and 17O13C18O by high-sensitivity CW-CRDS spectroscopy between 5851 and 7045cm−1, JQSRT, 109, 2437, 10.1016/j.jqsrt.2008.03.010

Campargue, 2008, Comment on “Spectroscopic database of CO2 line parameters: 4300–7000cm−1”, JQSRT, 109, 2261, 10.1016/j.jqsrt.2008.02.009

Teffo, 1992, Effective Hamiltonian for rovibrational energies and line intensities of carbon dioxide, J Mol Spectrosc, 156, 48, 10.1016/0022-2852(92)90092-3

Perevalov, 1995, Effective dipole moment and band intensities problem for carbon dioxide, J Mol Spectrosc, 171, 435, 10.1006/jmsp.1995.1131

Tashkun, 1998, Global fitting of 12C16O2 vibrational-rotational line positions using the effective Hamiltonian approach, JQSRT, 60, 785, 10.1016/S0022-4073(98)00082-X

Tashkun, 1999, Global fit of 12C16O2 vibrational-rotational line intensities using the effective operator approach, JQSRT, 62, 571, 10.1016/S0022-4073(98)00138-1

Perevalov VI, Tashkun SA. CDSD-296 (Carbon Dioxide Spectroscopic Databank): updated and enlarged version for atmospheric applications. In: 10th HITRAN database conference, Cambridge, MA, USA, 2008.

Tashkun SA, Perevalov VI, Teffo JL, Bykov AD, Lavrentieva NN. CDSD-296, the carbon dioxide spectroscopic databank: version for atmospheric applications. In: 14th international symposium on high resolution molecular spectroscopy, Krasnoyarsk, Russia, 2003.

Predoi-Cross A, McKellar ARW, Chris Benner D, Malathy Devi V, Gamache RR, Miller CE, et al. Temperature dependences for air-broadened Lorentz half width and pressure-shift coefficients in the 30013←00001 and 30012←00001 bands of CO2 near 1600nm. Can J Phys 2009; accepted.

Pollack, 1993, Near-infrared light from venus’ nightside: a spectroscopic analysis, Icarus, 103, 1, 10.1006/icar.1993.1055

Vander Auwera, 2006, Absolute line intensities of 13C16O2 in the 3090–3920cm−1 region, J Mol Spectrosc, 235, 77, 10.1016/j.jms.2005.10.005

Wattson, 1992, Direct numerical diagonalization: wave of the future, JQSRT, 48, 763, 10.1016/0022-4073(92)90140-Y

Wang, 2008, Fourier transform spectroscopy of 12C18O2 and 16O12C18O in the 3800–8500cm−1 region and the global modeling of the absorption spectrum of 12C18O2, J Mol Spectrosc, 247, 64, 10.1016/j.jms.2007.09.015

Mikhailenko S, Barbe A, Babikov Y, Tyuterev VG. S&MPO-a databank and information system for ozone spectroscopy on the WEB. See: 〈http://smpo.iao.ru〉.

Plateaux, 1995, Reims high resolution Fourier transform spectrometer—data reduction for ozone, Spectrochim Acta Part A, 51, 1153, 10.1016/0584-8539(94)00000-2

See: 〈http://smpo.iao.ru/ru/lev/par/1/6/〉 (December 2007).

See: 〈http://smpo.iao.ru/en/lev/par/1/4/〉 (June 2000).

Pickett, 1988, The vibrational and rotational spectra for ozone for (0,1,0) and (0,2,0) states, J Mol Spectrosc, 128, 151, 10.1016/0022-2852(88)90214-7

Bouazza, 1994, Line positions and intensities of the ν1+2ν2+ν3 and 2ν2+2ν3 bands of 16O3, J Mol Spectrosc, 166, 365, 10.1006/jmsp.1994.1201

Barbe, 1995, High-resolution infrared spectra of ozone in the 2300–2600cm−1 region, J Mol Spectrosc, 170, 244, 10.1006/jmsp.1995.1068

Sulakshina O, Institute of Atmospheric Optics, Tomsk, Russia, private communication, 1998. See: 〈http://smpo.iao.ru/en/lev/par/1/7/〉.

Flaud, 2003, Ozone absorption around 10μm, J Geophys Res, 108, 4269, 10.1029/2002JD002755

Flaud, 1989, Line parameters for 16O3 bands in the 7-μm region, J Mol Spectrosc, 134, 106, 10.1016/0022-2852(89)90132-X

Barbe, 1998, The 2ν2 and 3ν2−ν2 bands of ozone, Spectrochim Acta Part A, 54A, 1935, 10.1016/S1386-1425(98)00156-5

Mikhailenko, 2002, Extended analysis of line positions and intensities of ozone bands in the 2900–3400cm−1 region, J Mol Spectrosc, 215, 29, 10.1006/jmsp.2002.8597

De Backer-Barilly MR. Université de Reims, Reims, France, private communication, 2002. See: 〈http://smpo.iao.ru/ru/lev/par/1/5/〉.

Chichery, 2000, Intensities of the difference bands ν1+ν3−ν2 and 2ν3−ν2 of ozone. Comparison with theoretical predictions, J Mol Struct, 517, 165, 10.1016/S0022-2860(99)00247-1

Malathy Devi, 1987, Line positions and intensities for the ν1+ν2 and ν2+ν3 bands of 16O3, J Mol Spectrosc, 125, 174, 10.1016/0022-2852(87)90204-9

Barbe, 1998, First study of the v2=3 dyad (130)/(031) of ozone through the analysis of hot bands in the 2300–2600cm−1 region, J Mol Spectrosc, 187, 70, 10.1006/jmsp.1997.7483

Bouazza, 1995, The ν1+ν2+2ν3 and ν2+3ν3 bands of 16O3, J Mol Spectrosc, 174, 510, 10.1006/jmsp.1995.0019

Barbe, 1994, Experimental and theoretical study of absolute intensities of ozone spectral lines in the range 1850–2300cm−1, JQSRT, 52, 341, 10.1016/0022-4073(94)90164-3

Flaud, 1987, The ν1 and ν3 Bands of 16O3: line positions and intensities, J Mol Spectrosc, 124, 209, 10.1016/0022-2852(87)90135-4

Transition moment parameters. See: 〈http://smpo.iao.ru/ru/tran/par/1/8-3/〉.

Hamiltonian parameters. See: 〈http://smpo.iao.ru/ru/lev/par/1/12/〉.

Transition moment. See: 〈http://smpo.iao.ru/ru/tran/par/1/8-2/〉.

Mikhailenko, 2008, Update of line parameters of ozone in the 2590–2900cm−1 region, Appl Opt, 47, 4612, 10.1364/AO.47.004612

Barbe, 1997, First observation of the v2=3 state of ozone: the (131) state through analysis of cold and hot bands. Study of v2 behavior, J Mol Spectrosc, 184, 448, 10.1006/jmsp.1997.7350

Barbe, 1995, Analysis of the 2ν1+2ν2+ν3 band of ozone, J Mol Spectrosc, 171, 583, 10.1006/jmsp.1995.1147

Barbe, 1996, Analysis of the 2ν1+2ν3 band of ozone: Line positions and intensities, JQSRT, 55, 449, 10.1016/0022-4073(95)00183-2

Mikhailenko, 1996, Line positions and intensities of the ν1+ν2+3ν3, ν2+4ν3, and 3ν1+2ν2 bands of ozone, J Mol Spectrosc, 180, 227, 10.1006/jmsp.1996.0246

SMPO. See: 〈http://smpo.iao.ru/ru/tran/par/1/17-3/〉.

Barbe, 1997, Analysis of the 2ν1+ν2+2ν3 band of ozone, J Mol Spectrosc, 182, 333, 10.1006/jmsp.1996.7208

Bouazza, 1995, Line positions and intensities for the 2ν1+ν2+ν3 band of 16O3, J Mol Spectrosc, 171, 86, 10.1006/jmsp.1995.1103

Perrin, 1991, The 2.5μm bands of ozone: line positions and intensities, J Mol Spectrosc, 149, 519, 10.1016/0022-2852(91)90307-V

Mikhailenko S, Barbe A, Tyuterev VG, Plateaux JJ. New analysis of the (211)/(140)/(310)/(004)/(103) interacting states of ozone. In: VIII joint international symposium “atmospheric and ocean optics, atmospheric physics”, Irkutsk, Russia, 2001.

Barbe, 1996, Line positions and intensities of the 3ν1+ν3 band of ozone, J Mol Spectrosc, 175, 296, 10.1006/jmsp.1996.0035

Barbe, 1997, Infrared spectrum of ozone in the 4600 and 5300cm−1 regions: high order accidental resonances through the analysis of ν1+2ν2+3ν3−ν2, ν1+2ν2+3ν3, and 4ν1+ν3 bands, J Mol Spectrosc, 185, 408, 10.1006/jmsp.1997.7374

Flaud, 1996, High resolution analysis of the 5ν3, 3ν1+ν2+ν3, and ν1+4ν3 bands of 16O3: Line positions and intensities, J Mol Spectrosc, 177, 34, 10.1006/jmsp.1996.0114

Barbe A, Plateaux JJ, Tyuterev VG, Mikhailenko S. Analysis of high resolution measurements of the 2ν1+3ν3 band of ozone: coriolis interaction with the ν1+3ν2+2ν3 band. JQSRT 1998;185–94.

Barbe, 1998, Infrared high-resolution spectra of ozone in the range 5500–5570cm−1: analysis of ν2+5ν3 and ν1+ν2+4ν3 bands, J Phys B At Mol Opt Phys, 31, 2559, 10.1088/0953-4075/31/11/017

Barbe, 1998, The 2ν1+ν2+3ν3 band of 16O3: Line positions and intensities, J Mol Spectrosc, 192, 102, 10.1006/jmsp.1998.7683

Barbe, 1998, Analysis of high resolution measurements of the ν1+5ν3 band of ozone: coriolis interactions with the 6ν3 and 3ν1+ν2+2ν3 bands, Mol Phys, 94, 751

Flaud, 1989, The n2 bands of 16O18O16O and 16O16O18O: line positions and intensities, J Mol Spectrosc, 133, 217, 10.1016/0022-2852(89)90255-5

Chichery, 2001, High resolution IR spectra of 18O-enriched ozone: band centers of 16O16O18O, 16O18O18O, 18O16O18O, and 16O18O16O, J Mol Spectrosc, 205, 347, 10.1006/jmsp.2000.8276

De Backer-Barilly, 2002, High-resolution infrared spectra of the 16O18O16O ozone isotopomer in the range 900–5000cm−1: line positions, J Mol Spectrosc, 216, 454, 10.1006/jmsp.2002.8664

De Backer-Barilly MR. Université de Reims, Reims, France, private communication, 2007.

Wagner, 2002, Spectroscopic database for ozone in the fundamental spectral regions, J Geophys Res, 107, 4626, 10.1029/2001JD000818

Drouin, 2008, Temperature dependent air-broadened linewidths of ozone rotational transitions, J Mol Spectrosc, 251, 194, 10.1016/j.jms.2008.02.016

Devi, 1997, Air-broadening and shift coefficients of O3 Lines in the ν2 band and their temperature dependence, J Mol Spectrosc, 182, 221, 10.1006/jmsp.1996.7139

Larsen, 2001, Determination of self-, air-, and oxygen-broadening coefficients of pure rotational absorption lines of ozone and of their temperature dependencies, J Mol Spectrosc, 210, 259, 10.1006/jmsp.2001.8455

Flaud, 1990, Improved line parameters for ozone bands in the 10μm spectral region, Appl Opt, 29, 3667, 10.1364/AO.29.003667

Toth, 1991, Line frequency measurements and analysis of N2O between 900 and 4700cm−1, Appl Opt, 30, 5289, 10.1364/AO.30.005289

Toth, 1993, Line strengths (900–3600cm−1), self-broadened linewidths and frequency shifts (1800–2630cm−1) of N2O, Appl Opt, 32, 7326, 10.1364/AO.32.007326

Negrão, 2007, The 2-μm spectroscopy of Huygens probe landing site on Titan with very large telescope/nasmyth adaptive optics system near-infrared imager and spectrograph, J Geophys Res, 112, E02S92, 10.1029/2005JE002651

Swain, 2008, The presence of methane in the atmosphere of an extrasolar planet, Nature, 452, 329, 10.1038/nature06823

Albert, 2009, Global analysis of the high resolution infrared spectrum of methane 12CH4 in the region from 0 to 4800cm−1, Chem Phys, 356, 131, 10.1016/j.chemphys.2008.10.019

Wishnow, 2007, The distortion dipole rotational spectrum of CH4: a low temperature far-infrared study, JQSRT, 103, 102, 10.1016/j.jqsrt.2006.06.005

Frankenberg, 2008, Pressure broadening in the 2ν3 band of methane and its implication on atmospheric retrievals, Atmos Chem Phys, 8, 5061, 10.5194/acp-8-5061-2008

Margolis, 1988, Measured line positions and strengths of methane between 5500 and 6180cm−1, Appl Opt, 27, 4038, 10.1364/AO.27.004038

Margolis, 1990, Empirical values of the ground state energies for methane transitions between 5500 to 6150cm−1, Appl Opt, 29, 2295, 10.1364/AO.29.002295

Gao, 2009, Empirical low energy values for methane transitions in the 5852–6181cm−1 region by absorption spectroscopy at 81K, J Mol Spectrosc, 253, 55, 10.1016/j.jms.2008.09.005

Predoi-Cross, 2005, Multispectrum analysis of self-broadening and pressure-shifting coefficients of 12CH4 from 4100 to 4635cm−1, J Mol Spectrosc, 232, 231, 10.1016/j.jms.2005.04.007

Predoi-Cross, 2006, Multispectrum analysis of 12CH4 from 4100 to 4635cm−1: II. Air-broadening coefficients (widths and shifts), J Mol Spectrosc, 236, 201, 10.1016/j.jms.2006.01.013

Brown, 2003, Methane line parameters in HITRAN, JQSRT, 82, 219, 10.1016/S0022-4073(03)00155-9

Brown, 2005, Empirical line parameters of methane from 1.1 to 2.1μm, JQSRT, 96, 251, 10.1016/j.jqsrt.2004.12.037

Smith MAH, Benner DC, Predoi-Cross A, Malathy Devi V. Multispectrum analysis of 12CH4 in the ν4 band: I. Air-broadened half widths, pressure-induced shifts, temperature dependences and line mixing. JQSRT 2009; this issue, doi:10.1016/j.jqsrt.2009.02.015.

Smith MAH, Benner DC, Predoi-Cross A, Malathy Devi V. Multispectrum analysis of 12CH4 in the ν4 band: II. Self-broadened half widths, pressure-induced shifts, temperature dependences and line mixing. JQSRT 2009, to be submitted.

Antony, 2008, N2-, O2- and air-broadened half-widths and line shifts for transitions in the ν3 band of methane in the 2726- to 3200-cm−1 spectral region, J Mol Spectrosc, 251, 268, 10.1016/j.jms.2008.03.012

Lyulin OM, Nikitin AV, Perevalov VI, Morino I, Yokota T, Kumazawa R, et al. Measurements of N2- and O2-broadening and -shifting parameters of the methane spectral lines in the 5550–6236cm−1 region. JQSRT 2009, this issue, doi:10.1016/j.jqsrt.2009.02.012.

Kassi, 2008, The near-infrared (1.30–1.70μm) absorption spectrum of methane down to 77K, Phys Chem Chem Phys, 10, 4410, 10.1039/b805947k

Thiévin, 2008, High-temperature emission spectroscopy of methane, JQSRT, 109, 2027, 10.1016/j.jqsrt.2008.01.023

Wenger, 2008, The partition sum of methane at high temperature, JQSRT, 109, 2697, 10.1016/j.jqsrt.2008.06.006

Lattanzi, 2008, THz spectrum of monodeuterated methane, JQSRT, 109, 580, 10.1016/j.jqsrt.2007.09.002

Pickett, 1998, Submillimeter, millimeter and microwave spectral line catalog, JQSRT, 60, 883, 10.1016/S0022-4073(98)00091-0

Müller, 2005, The cologne database for molecular spectroscopy, CDMS: a useful tool for astronomers and spectroscopists, J Mol Struct, 742, 215, 10.1016/j.molstruc.2005.01.027

Bézard, 2007, Detection of 13CH3D on Titan, Icarus, 191, 397, 10.1016/j.icarus.2007.06.004

Tarrago, 1986, Triad νn(A1), νt(E), νt′(E), in C3v molecules: energy and intensity formulation (computer programs), J Mol Spectrosc, 119, 418, 10.1016/0022-2852(86)90036-6

Ulenikov, 2000, Rotational analysis of the ground state and the lowest fundamentals ν3, ν5, and ν6 of 13CH3D, J Mol Spectrosc, 201, 9, 10.1006/jmsp.1999.8054

Brown, 2004, Line intensities of CH3D in the Triad region: 6–10μm, J Mol Struct, 695–696, 181

Nikitin, 2006, Preliminary analysis of CH3D from 3250 to 3700cm−1, J Mol Spectrosc, 240, 14, 10.1016/j.jms.2006.08.002

Boussin, 1998, Line intensities and self-broadening coefficients for the 3ν2 band of monodeuterated methane, JQSRT, 60, 501, 10.1016/S0022-4073(97)00246-X

Malathy Devi, 2002, Self- and N2-broadening, pressure induced shift and line mixing in the ν5 band of 12CH3D using a multispectrum fitting technique, JQSRT, 74, 1, 10.1016/S0022-4073(01)00190-X

Robichaud, 2008, High-accuracy transition frequencies for the O2 A-band, J Mol Spectrosc, 251, 27, 10.1016/j.jms.2007.12.008

Robichaud, 2008, Experimental intensity and lineshape parameters of the oxygen A-band using frequency-stabilized cavity ring-down spectroscopy, J Mol Spectrosc, 248, 1, 10.1016/j.jms.2007.10.010

Robichaud, 2008, High-precision pressure shifting measurement technique using frequency-stabilized cavity ring-down spectroscopy, JQSRT, 109, 435, 10.1016/j.jqsrt.2007.06.005

Brown, 2000, Experimental line parameters of the oxygen A band at 760nm, J Mol Spectrosc, 199, 166, 10.1006/jmsp.1999.8012

Robichaud DJ, Yeung LY, Long DA, Havey DK, Hodges JT, Lisak D, et al. Experimental line parameters of the A-band of oxygen isotopologues at 760nm using frequency-stabilized cavity ring-down spectroscopy. J Phys Chem A 2009, submitted for publication.

Yang, 2005, Ground-based photon path measurements from solar absorption spectra of the O2 A-band, JQSRT, 90, 309, 10.1016/j.jqsrt.2004.03.020

Predoi-Cross, 2008, Nitrogen-broadened lineshapes in the oxygen A-band: experimental results and theoretical calculations, J Mol Spectrosc, 251, 159, 10.1016/j.jms.2008.02.010

Falke, 2006, Transition frequencies of the D lines of K39, K40, and K41 measured with a femtosecond laser frequency comb, Phys Rev A, 74, 32503, 10.1103/PhysRevA.74.032503

Babcock, 1948, Fine structure of the red system of atmospheric oxygen bands, Astrophys J, 108, 167, 10.1086/145062

Predoi-Cross, 2008, Spectroscopic lineshape study of the self-perturbed oxygen A-band, J Mol Spectrosc, 248, 85, 10.1016/j.jms.2007.11.007

Tran, 2008, An improved O2 A band absorption model and its consequences for retrievals of photon paths and surface pressures, J Geophys Res, 113

Washenfelder, 2006, Carbon dioxide column abundances at the Wisconsin Tall Tower site, J Geophys Res, 111, D22305, 10.1029/2006JD007154

Newman, 1999, Integrated absorption intensity and Einstein coefficients for the O2 a 1Δg−X 3Σg− (0,0) transition: a comparison of cavity ringdown and high resolution Fourier transform spectroscopy with a long-path absorption cell, J Chem Phys, 110, 10749, 10.1063/1.479018

Newman, 2000, Temperature and pressure dependence of line widths and integrated absorption intensities for the O2 a 1Δg−X 3Σg− (0,0) transition, J Phys Chem A, 104, 9467, 10.1021/jp001640r

Goldman, 1998, Nitric oxide line parameters: review of 1996 HITRAN update and new results, JQSRT, 60, 825, 10.1016/S0022-4073(98)00085-5

Chu, 1998, Line intensities for the 8-μm bands of SO2, J Mol Spectrosc, 189, 55, 10.1006/jmsp.1997.7517

Flaud, 1993, A reanalysis of the (010), (020), (100) and (001) rotational levels of 32S16O2, J Mol Spectrosc, 160, 272, 10.1006/jmsp.1993.1174

Spencer, 2005, Mid-infrared detection of large longitudinal asymmetries in Io's SO2 atmosphere, Icarus, 176, 283, 10.1016/j.icarus.2005.01.019

Henningsen, 2008, Revised molecular parameters for 32SO2 and 34SO2 from high resolution study of the infrared spectrum in the 7–8μm wavelength region, JQSRT, 109, 2491, 10.1016/j.jqsrt.2008.04.001

Sumpf, 1996, Self- and air-broadening in the ν3 band of SO2, J Mol Spectrosc, 179, 137, 10.1006/jmsp.1996.0191

Sumpf, 1996, Self-, air-, and nitrogen-broadening in the ν1 band of SO2, J Mol Spectrosc, 176, 127, 10.1006/jmsp.1996.0068

Ball, 1996, The pressure broadening of SO2 by N2, O2, He, and H2 between 90 and 500K, JQSRT, 56, 109, 10.1016/0022-4073(96)00016-7

Sumpf, 1997, Experimental investigation of the self-broadening coefficients in the ν1+ν3 band of SO2 and the 2ν2 Band of H2S, J Mol Spectrosc, 181, 160, 10.1006/jmsp.1996.7168

Sumpf, 1999, Line intensity and self-broadening investigations in the 19μm ν2 band of SO2, Spectrochim Acta Part A, 55, 1931, 10.1016/S1386-1425(99)00066-9

Sumpf, 2001, Line intensity and self-broadening investigations in the ν1 and ν3 bands of SO2, J Mol Struct, 599, 39, 10.1016/S0022-2860(01)00836-5

Pine, 1996, A terahertz photomixing spectrometer: application to SO2 self broadening, J Mol Spectrosc, 175, 37, 10.1006/jmsp.1996.0006

Lafferty, 2009, 34S16O2: high-resolution analysis of the (030), (101), (111), (002) and (201) vibrational states; determination of equilibrium rotational constants for sulfur dioxide and anharmonic vibrational constants, J Mol Spectrosc, 253, 51, 10.1016/j.jms.2008.09.006

Lafferty, 2008, High resolution analysis of the rotational levels of the (000), (010), (100), (001), (020), (110) and (011) vibrational states of 34S16O2, J Mol Spectrosc, 252, 72, 10.1016/j.jms.2008.06.013

Flaud JM, Lafferty WJ, Sams RL. Line intensities for the ν1, ν3 and ν1+ν3 bands of 34SO2. JQSRT 2009; this issue, doi:10.1016/j.jqsrt.2009.12.003.

Flaud, 2006, MIPAS database: validation of HNO3 line parameters using MIPAS satellite measurements, Atmos Chem Phys, 6, 5037, 10.5194/acp-6-5037-2006

Gomez L, Tran H, Perrin A, Gamache RR, Laraia A, Orphal J, et al. Some improvements of the HNO3 spectroscopic parameters in the spectral region from 600 to 950cm−1. JQSRT 2009; this issue, doi:10.1016/j.jqsrt.2008.07.004.

Perrin, 2004, New analysis of the ν5 and 2ν9 bands of HNO3 by infrared and millimeter wave techniques: line positions and intensities, J Mol Spectrosc, 228, 375, 10.1016/j.jms.2004.02.002

Chackerian, 2003, Anhydrous nitric acid integrated absorption cross sections: 820–5300cm−1, JQSRT, 82, 429, 10.1016/S0022-4073(03)00168-7

Laraia A, Gamache RR, Perrin A, Hartmann JM, Gomez L. Theoretical calculations of N2-broadened half-widths of ν5 transitions of HNO3. JQSRT 2009; this issue, doi:10.1016/j.jqsrt.2009.02.003.

Mencaraglia, 2006, Validation of MIPAS satellite measurements of HNO3 using comparison of rotational and vibrational spectroscopy, J Geophys Res, 111, D19305, 10.1029/2005JD006099

Tran, 2009, Validation of HNO3 spectroscopic parameters using atmospheric absorption and emission measurements, JQSRT, 110, 109, 10.1016/j.jqsrt.2008.09.012

Petkie, 2003, The millimeter and submillimeter spectra of the ground state and excited ν9, ν8, ν7, and ν6 vibrational states of HNO3, J Mol Spectrosc, 218, 127, 10.1016/S0022-2852(02)00025-5

Petkie, 2005, The simulation of infrared bands from the analyses of rotational spectra: the 2ν9−ν9 and ν5−ν9 hot bands of HNO3, JQSRT, 92, 129, 10.1016/j.jqsrt.2004.03.003

Sirota, 1997, HNO3: absolute line intensities for the ν9 fundamental, J Mol Spectrosc, 184, 140, 10.1006/jmsp.1997.7310

Goldman, 1975, Statistical-band model analysis and integrated intensities for the 21.8μm bands of HNO3 vapor, J Opt Soc Am, 65, 10, 10.1364/JOSA.65.000010

Perrin, 1989, The ν3 and ν4 interacting bands of HNO3, Mol Phys, 67, 249, 10.1080/00268978900101061

Perrin, 2006, The ν5 and 2ν9 bands of the 15N isotopic species of nitric acid (H15NO3): line positions and intensities, J Mol Spectrosc, 237, 27, 10.1016/j.jms.2006.02.005

Brizzi, 2007, First observation of H15NO3 in atmospheric spectra, Geophys Res Lett, 34, L03802, 10.1029/2006GL028395

Colin, 2002, Spectroscopic constants and term values for the X2Πi state of OH (v=0–10), J Mol Spectrosc, 214, 225, 10.1006/jmsp.2002.8591

Colin R. University of Brussels, Brussels, Belgium, private communication, 2008.

Goldman, 1998, Updated line parameters for OH X 2Π−X 2Π (v″,v′) transitions, JQSRT, 59, 453, 10.1016/S0022-4073(97)00112-X

Rinsland, 1993, The fundamental bands of H35Cl and H37Cl: line positions from high-resolution laboratory data, J Mol Spectrosc, 159, 274, 10.1006/jmsp.1993.1124

Coxon, 2000, The radial Hamiltonians for the X 1Σ+ and B 1Σ+ states of HCl, J Mol Spectrosc, 203, 49, 10.1006/jmsp.2000.8155

Oh, 1994, Pressure broadening of ClO by N2 and O2 near 204 and 649GHz and new frequency measurements between 632 and 725GHz, JQSRT, 52, 151, 10.1016/0022-4073(94)90004-3

Bauer A, Birk M, Bühler S, Colmont JM, von Engeln A, Künzi K, et al. Study on a spectroscopic database for millimeter and submillimeter wavelength. Final report of ESA no. 11581/95/NL/CN, 1998.

Régalia-Jarlot, 2002, Line intensities of the: ν3, 4ν2, ν1+ν3, 3ν1 and 2ν1+2ν2 bands of 16O12C32S molecule, JQSRT, 74, 455, 10.1016/S0022-4073(01)00267-9

Vander Auwera, 2006, Absolute line intensities for carbonyl sulfide from 827 to 2939cm−1, J Mol Struct, 780–781, 134, 10.1016/j.molstruc.2005.04.052

Naïm, 1998, Fourier transform spectroscopy of carbonyl sulfide from 3700 to 4800cm−1 and selection of a line-pointing program, J Mol Spectrosc, 192, 91, 10.1006/jmsp.1998.7579

Fayt, 1986, Global rovibrational analysis of carbonyl sulfide, J Mol Spectrosc, 119, 233, 10.1016/0022-2852(86)90022-6

Lahaye, 1987, CO2 laser saturation Stark spectra and global rovibrational analysis of the main isotopic species of carbonyl sulfide (OC34S, O13CS, and 18OCS), J Mol Spectrosc, 123, 48, 10.1016/0022-2852(87)90262-1

Masukidi, 1992, Intracavity CO and CO2 laser Stark spectroscopy of the isotopomers of carbonyl sulfide, J Mol Spectrosc, 154, 137, 10.1016/0022-2852(92)90035-M

Strugariu, 1998, Fourier transform spectroscopy of 18O-enriched carbonyl sulfide from 1825 to 2700cm−1, J Mol Spectrosc, 189, 206, 10.1006/jmsp.1998.7540

Sung K, Toth RA, Brown LR, Crawford T. Line strength measurements of carbonyl sulfide (16O12C32S) in the 2ν3, ν1+2ν2+ν3, and 4ν2+ν3 bands. JQSRT 2009; submitted for publication.

Toth RA, Sung K, Brown LR, Crawford T. Intensities of 43 bands of five isotopologues of OCS near 4100cm−1. JQSRT, in preparation.

Bermejo, 1997, Absolute line intensities in the 2ν3 band of 16O12C32S, J Mol Spectrosc, 185, 26, 10.1006/jmsp.1997.7360

Rohart F. Université de Lille, Lille, France, private communication, 2008.

Matton, 2006, Terahertz spectroscopy applied to the measurement of strengths and self-broadening coefficients for high-J lines of OCS, J Mol Spectrosc, 239, 182, 10.1016/j.jms.2006.07.004

Koshelev, 2009, Collisional broadening and shifting of OCS rotational spectrum lines, JQSRT, 110, 118, 10.1016/j.jqsrt.2008.09.010

Domenech, 2000, Pressure lineshift and broadening coefficients in the 2ν3 band of OCS, J Mol Spectrosc, 200, 266, 10.1006/jmsp.1999.8055

Bouanich, 1988, Diode-laser measurements of Ar- and CO2-broadened linewidths in the ν1 band of OCS, JQSRT, 39, 353, 10.1016/0022-4073(88)90100-8

Perrin A, Jacquemart D, Kwabia Tchana F, Lacome N. Absolute line intensities measurements and calculations for the 5.7 and 3.6μm bands of formaldehyde. JQSRT 2009; this issue, doi:10.1016/j.jqsrt.2008.11.005.

Steck, 2008, Retrieval of global upper tropospheric and stratospheric formaldehyde (H2CO) distributions from high-resolution MIPAS-Envisat spectra, Atmos Chem Phys, 8, 463, 10.5194/acp-8-463-2008

Dufour, 2009, Global upper tropospheric formaldehyde seasonal cycles investigated through ACE-FTS space borne observations, Atmos Chem Phys, 9, 1051, 10.5194/acp-9-3893-2009

Tchana, 2007, New analysis of the ν2 band of formaldehyde (H212C16O): line positions for the ν2, ν3, ν4 and ν6 interacting bands, J Mol Spectrosc, 245, 141, 10.1016/j.jms.2007.07.008

Margulés L, Perrin A, Janeckovà R, Bailleux S, Endres CP, Giesen TF, et al. Rotational transitions within the ν2, ν3, ν4 and ν6 bands of formaldehyde H212C16O. Can J Phys, accepted.

Perrin, 2006, New analysis of the 2ν4, ν4+ν6, 2ν6, ν3+ν4, ν3+ν6, ν1, ν5, ν2+ν4, 2ν3, ν2+ν6, and ν2+ν3 bands of formaldehyde H2CO, J Mol Struct, 780–781, 28, 10.1016/j.molstruc.2005.03.052

Sharpe, 2004, Gas-phase databases for quantitative infrared spectroscopy, Appl Spectrosc, 58, 1452, 10.1366/0003702042641281

Gratien, 2007, Laboratory intercomparison of the formaldehyde absorption cross sections in the infrared (1660–1820cm−1) and ultraviolet (300–360nm) spectral regions, J Geophys Res, 112, D05305, 10.1029/2006JD007201

Gratien, 2007, UV and IR absorption cross-sections of HCHO, HCDO, and DCDO, J Phys Chem A, 111, 11506, 10.1021/jp074288r

Goldman, 2007, On the line parameters for the X1Σg+ (1–0) infrared quadrupolar transitions of 14N2, JQSRT, 103, 168, 10.1016/j.jqsrt.2006.05.010

Li, 2007, Quadrupole moment function and absolute infrared quadrupolar intensities for N2, J Chem Phys, 126, 4301, 10.1063/1.2739524

Yang, 2008, Oxygen, nitrogen and air broadening of HCN spectral lines at terahertz frequencies, JQSRT, 109, 2857, 10.1016/j.jqsrt.2008.08.005

Rinsland, 2003, A multispectrum analysis of the ν1 band of H12C14N: part II. Air- and N2-broadening, shifts and their temperature dependences, JQSRT, 82, 343, 10.1016/S0022-4073(03)00162-6

Devi, 2005, A multispectrum analysis of the ν2 band of H12C14N: part I. Intensities, broadening, and shift coefficients, J Mol Spectrosc, 231, 66, 10.1016/j.jms.2004.12.004

Nikitin, 2005, Global analysis of 12CH335Cl and 12CH337Cl: simultaneous fit of the lower five polyads (0–2600cm−1), J Mol Spectrosc, 230, 174, 10.1016/j.jms.2004.11.012

Perrin, 1995, The 7.9-μm band of hydrogen peroxide: line positions and intensities, J Mol Spectrosc, 171, 358, 10.1006/jmsp.1995.1125

Klee, 1999, Absolute line intensities for the ν6 band of H2O2, J Mol Spectrosc, 195, 154, 10.1006/jmsp.1999.7807

Lyulin, 2007, Line intensities of acetylene: measurements in the 2.5-μm spectral region and global modeling in the Δp=4 and 6 series, JQSRT, 103, 496, 10.1016/j.jqsrt.2006.07.002

Jacquemart, 2007, Multispectrum fitting of line parameters for 12C2H2 in the 3.8-μm spectral region, JQSRT, 103, 478, 10.1016/j.jqsrt.2006.06.008

Jacquemart D, Lacome N, Mandin JY, Dana V, Tran H, Gueye FK, et al. The IR spectrum of 12C2H2: line intensity measurements in the 1.4μm region and update of the databases. JQSRT 2009; this issue, doi:10.1016/j.jqsrt.2008.10.002.

Jacquemart D, Lacome N, Mandin JY. Line intensities of 12C2H2 in the 1.3, 1.2, and 1μm spectral regions. JQSRT 2009; this issue, doi:10.1016/j.jqsrt.2008.11.009.

Matsuura, 2006, Spitzer observations of acetylene bands in carbon-rich asymptotic giant branch stars in the Large Magellanic Cloud, Mon Not R Astron Soc, 371, 415, 10.1111/j.1365-2966.2006.10664.x

Vander Auwera, 2000, Absolute intensities measurements in the (ν4+ν5) band of 12C2H2: analysis of Herman–Wallis effects and forbidden transitions, J Mol Spectrosc, 201, 143, 10.1006/jmsp.2000.8079

Rothman, 1983, AFGL atmospheric absorption line parameters compilation: 1982 edition, Appl Opt, 22, 2247, 10.1364/AO.22.002247

Vander Auwera, 2007, Toward an accurate database for the 12μm region of the ethane spectrum, Astrophys J, 662, 750, 10.1086/515567

Cooper, 2006, Global fit analysis including the ν9+ν4−ν4 hot band of ethane: evidence of an interaction with the ν12 fundamental, J Mol Spectrosc, 239, 51, 10.1016/j.jms.2006.05.017

Pine, 1996, Torsional tunneling and A1−A2 splittings and air broadening of the rQ0 and pQ3 subbranches of the ν7 band of ethane, J Mol Spectrosc, 175, 21, 10.1006/jmsp.1996.0004

Blass, 1987, Self- and foreign-gas broadening of ethane lines determined from diode laser measurements at 12μm, JQSRT, 38, 183, 10.1016/0022-4073(87)90083-5

Kurtz, 1991, Laboratory spectra of 13C ethane, J Geophys Res, 96, 17489, 10.1029/91JE01742

Weber, 1993, The ground state of 13C12CH6 (ethane) derived from ν12 at 12.2μm, J Mol Spectrosc, 159, 388, 10.1006/jmsp.1993.1136

Weber, 1994, Fourier transform infrared and tunable diode laser spectra of 13C12CH6 ν12 torsion–vibration–rotation band: frequencies, intensities, and barriers to internal rotation, J Chem Phys, 100, 8681, 10.1063/1.466723

Weber M, Reuter DC, Jennings DE, Blass WE, Hillman JJ. A spectral atlas of the ν12 fundamental of 13C12CH6 in the 12μm region. NASA technical memorandum 104601, Greenbelt; 1994.

Beer, 1979, Phosphine absorption in the 5-μm window of Jupiter, Icarus, 40, 189, 10.1016/0019-1035(79)90064-2

Butler, 2006, The absorption spectrum of phosphine (PH3) between 2.8 and 3.7μm: line positions, intensities, and assignments, J Mol Spectrosc, 238, 178, 10.1016/j.jms.2006.04.021

Nikitin AV, Champion JP, Butler RAH, Brown LR, Kleiner I. Global modeling of the lower three polyads of PH3 preliminary results. J Mol Spectrosc, in press, doi:10.1016/j.jms.2009.01.008.

Boudon, 2002, Rovibrational spectroscopy of sulphur hexafluoride: a review, vol. 1, 25

Boudon, 2001, High resolution spectroscopy and analysis of the ν4 bending region of SF6 near 615cm−1, J Mol Spectrosc, 205, 304, 10.1006/jmsp.2000.8267

Kim, 1979, Analysis of the ν4 (615cm−1) region of the Fourier transform and diode laser spectra of SF6, J Mol Spectrosc, 76, 322, 10.1016/0022-2852(79)90232-7

Person, 1983, Coriolis intensity perturbations of the ν4 band of SF6, J Mol Spectrosc, 98, 229, 10.1016/0022-2852(83)90217-5

Wenger, 2000, Highly-spherical top data system (HTDS) software for the spectrum simulation of octahedral XY6 molecules, JQSRT, 66, 1, 10.1016/S0022-4073(99)00161-2

Vander Auwera, 2007, Absolute line intensities for formic acid and dissociation constant of the dimer, J Chem Phys, 126, 124311, 10.1063/1.2712439

Perrin, 2007, An improved database for the 9μm region of the formic acid spectrum, JQSRT, 108, 363, 10.1016/j.jqsrt.2007.05.002

Perrin A, Vander Auwera J, Zelinger Z. High-resolution Fourier transform study of the ν3 fundamental band of trans-formic acid. JQSRT 2009; this issue, doi:10.1016/j.jqsrt.2008.09.006.

Coheur, 2007, ACE-FTS observation of a young biomass burning plume: first reported measurements of C2H4, C3H6O, H2CO and PAN by infrared occultation from space, Atmos Chem Phys Discuss, 7, 7907, 10.5194/acpd-7-7907-2007

Herndon, 2007, Airborne measurements of HCHO and HCOOH during the New England Air Quality Study 2004 using a pulsed quantum cascade laser spectrometer, J Geophys Res, 112, D10S03, 10.1029/2006JD007600

Goldman A, Gillis JR. Line parameters and line calculation for molecules of stratospheric interest. Technical report, Department of Physics, University of Denver, 1984.

Perrin, 1999, Spectral parameters for the ν6 region of HCOOH and its measurement in the infrared tropospheric spectrum, J Geophys Res, 104, 18661, 10.1029/1999JD900358

López-Puertas, 2006, NO+ fundamental and first hot ro-vibrational line frequencies from MIPAS/Envisat atmospheric spectra, J Mol Spectrosc, 237, 218, 10.1016/j.jms.2006.03.015

Bowman, 1982, Millimeter and submillimeter spectrum of NO+, J Chem Phys, 77, 4261, 10.1063/1.444307

Ho, 1991, Diode laser spectroscopy of the vibrational fundamental of NO+, J Mol Spectrosc, 149, 559, 10.1016/0022-2852(91)90311-W

Hilpert, 1994, Tunable infrared and far-infrared direct absorption spectroscopy of molecular ions in a supersonic jet expansion, Chem Phys Lett, 219, 384, 10.1016/0009-2614(94)00129-4

Miescher, 1956, Rotationsanalyse der NO+-banden, Helv Phys Acta, 29, 135

LeRoy RJ. DParfit 3.3, A computer program for fitting multi-isotopomer diatomic molecule spectra. University of Waterloo Chemical Physics research report CP-660, 2005. See: 〈http://leroy.uwaterloo.ca/〉.

Lary, 1996, Gas phase atmospheric bromine photochemistry, J Geophys Res, 101, 1505, 10.1029/95JD02463

Lary, 1996, Heterogeneous atmospheric bromine chemistry, J Geophys Res, 101, 1489, 10.1029/95JD02839

Hanson, 1996, Reaction of BrONO2 with H2O on submicron sulfuric acid aerosol and the implications for the lower stratosphere, J Geophys Res, 101, 9063, 10.1029/96JD00347

Pfeilsticker, 2000, Lower stratospheric organic and inorganic bromine budget for the arctic winter 1998/99, Geophys Res Lett, 27, 3305, 10.1029/2000GL011650

Sander, 1996, Model study indicating halogen activation and ozone destruction in polluted air masses transported to the sea, J Geophys Res, 101, 9121, 10.1029/95JD03793

Vogt, 1996, A mechanism for halogen release from sea-salt aerosol in the remote marine boundary layer, Nature, 383, 327, 10.1038/383327a0

Johnson, 1995, Detection of HBr and upper limit for HOBr: Bromine partitioning in the stratosphere, Geophys Res Lett, 22, 1373, 10.1029/95GL01349

Orphal, 2005, The far infrared rotational spectrum of HOBr: line positions and intensities, J Mol Struct, 742, 153, 10.1016/j.molstruc.2005.01.006

Orphal, 2003, The ν3 bands of HOBr around 16μm studied by high-resolution Fourier-transform spectroscopy, J Mol Spectrosc, 221, 239, 10.1016/S0022-2852(03)00222-4

Orphal J, Flaud JM, Kwabia Tchana F, Kou Q, Pirali O. High-resolution spectroscopy and analysis of the 2ν1 bands of HOBr in the near-infrared. J Mol Spectrosc 2009, to be submitted.

Rothman, 2003, The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001, JQSRT, 82, 5, 10.1016/S0022-4073(03)00146-8

Rotger, 2008, Line positions and intensities in the ν12 band of ethylene near 1450cm−1: an experimental and theoretical study, JQSRT, 109, 952, 10.1016/j.jqsrt.2007.12.005

Blanquet, 2003, Self-broadening coefficients in the ν7 band of ethylene at room and low temperatures, J Mol Spectrosc, 222, 284, 10.1016/j.jms.2003.07.003

Brannon, 1992, Tunable diode laser measurements on the 951.7393cm−1 line of 12C2H4 at planetary atmospheric temperatures, JQSRT, 47, 237, 10.1016/0022-4073(92)90141-P

Reuter, 1993, Absolute intensities and foreign gas broadening coefficients of the 111,10←112,10 and 180,18←181,18 lines in the ν7 band of C2H4, JQSRT, 50, 477, 10.1016/0022-4073(93)90040-O

Blanquet, 2000, Diode-laser measurements of N2-broadening coefficients in the ν7 band of C2H4, J Mol Spectrosc, 201, 56, 10.1006/jmsp.2000.8056

Xu LH. University of New Brunswick, St John, Canada, private communication, 2007.

McElroy, 1986, Reductions of Antarctic ozone due to synergistic interactions of chlorine and bromine, Nature, 321, 759, 10.1038/321759a0

Kurylo MJ, Rodriguez JM, Andreae MO, Atlas EL, Blake DR, Butler JH, et al. World Meteorological Organization; 1999.

Kwabia Tchana, 2004, New analysis of the Coriolis-interacting ν2 and ν5 bands of CH379Br and CH381Br, J Mol Spectrosc, 228, 441, 10.1016/j.jms.2004.05.011

Kwabia Tchana, 2006, Absolute line intensities in methyl bromide: the 7-μm region, J Mol Spectrosc, 235, 132, 10.1016/j.jms.2005.10.013

Jacquemart, 2007, A complete set of line parameters for CH3Br in the 10-μm spectral region, JQSRT, 105, 264, 10.1016/j.jqsrt.2006.10.006

Benedict, 1964, Calculation of line widths in H2O–H2O and H2O–O2 collisions, JQSRT, 4, 453, 10.1016/0022-4073(64)90006-8

Toth, 2003, Oxygen broadening parameters of water vapour: 1212–2136cm−1, J Mol Spectrosc, 218, 135, 10.1016/S0022-2852(02)00022-X

Rothman, 1987, The HITRAN database: 1986 edition, Appl Opt, 26, 4058, 10.1364/AO.26.004058

Bouanich, 1993, Theoretical O2- and N2-broadening coefficients of CH3Cl spectral lines, J Mol Spectrosc, 161, 416, 10.1006/jmsp.1993.1247

Colmont, 2006, K-dependence and temperature dependence of N2- and O2-broadening coefficients for the J=14–13 transition of methyl chloride CH3 35Cl, J Mol Struct, 780–781, 268, 10.1016/j.molstruc.2005.06.041

Gamache, 1985, Theoretical N2-, O2-, and air-broadened halfwidths of 16O3 calculated by Quantum Fourier Transform Theory with realistic collision dynamics, J Mol Spectrosc, 109, 283, 10.1016/0022-2852(85)90314-5

Jacquemart, 2008, Temperature dependence of self- and N2-broadening coefficients for CH3Br in the 10-μm spectral region, JQSRT, 109, 569, 10.1016/j.jqsrt.2007.08.010

Tran, 2008, Line-mixing calculation in the ν6 Q branches of methyl bromide broadened by nitrogen: experiment and modelling, JQSRT, 109, 119, 10.1016/j.jqsrt.2007.05.003

Gomez L, Tran H, Jacquemart D. Line-mixing calculation in the ν6 Q branches of ν2-broadened CH3Br at low temperatures. J Mol Spectrosc 2009, in press.

Rinsland, 2008, Multispectrum analysis of the ν4 band of CH3CN: positions, intensities, self- and N2-broadening, and pressure-induced shifts, JQSRT, 109, 974, 10.1016/j.jqsrt.2007.11.013

Fabian, 1998, Analysis of the line profiles of CH3CN for the J=5→4 and 6→5 rotational transitions, J Mol Spectrosc, 190, 232, 10.1006/jmsp.1998.7587

Colmont, 2006, K-Dependence and temperature dependence of N2-, H2- and He-broadening coefficients for the J=12–11 transition of acetonitrile CH3C14N located near 220.7GHz, J Mol Spectrosc, 238, 98, 10.1016/j.jms.2006.04.017

Worton, 2007, Atmospheric trends and radiative forcings of CF4 and C2F6 inferred from firn air, Environ Sci Technol, 41, 2184, 10.1021/es061710t

Cicerone, 1979, Atmospheric carbon tetrafluoride: a nearly inert gas, Science, 206, 59, 10.1126/science.206.4414.59

Zander, 1996, Increase of stratospheric carbon tetrafluoride (CF4) based on ATMOS observations from space, Geophys Res Lett, 23, 2353, 10.1029/96GL00957

Rinsland, 2006, Long-term stratospheric carbon tetrafluoride (CF4) increase inferred from 1985–2004 infrared space-based solar occultation measurements, Geophys Res Lett, 33, 02808, 10.1029/2005GL024709

Goldman, 1979, Identification of the ν3 vibration–rotation band of CF4 in infrared balloon-borne solar spectra, Geophys Res Lett, 6, 609, 10.1029/GL006i007p00609

Brown, 1987, Molecular line parameters for the atmospheric trace molecule spectroscopy (ATMOS) experiment, Appl Opt, 26, 5154, 10.1364/AO.26.005154

Gabard, 1995, Study of the ν3 and 2ν4 interacting states of 12CF4, Mol Phys, 85, 735, 10.1080/00268979500101441

Wenger, 2008, XTDS and SPVIEW: graphical tools for the analysis and simulation of high-resolution molecular spectra, J Mol Spectrosc, 251, 102, 10.1016/j.jms.2008.01.011

Papoušek, 1995, Density functional computations of the dipole moment derivatives for halogenated methanes, J Phys Chem, 99, 15387, 10.1021/j100042a010

Boudon V, Domanskaya A, Maul C, Georges R, Mitchell J, Harter WG. High-resolution spectroscopy and analysis of the 2ν4/ν3 dyad of CF4. In preparation.

Höjer, 1996, Air-broadening coefficients for the ν3 band of CF4, J Mol Spectrosc, 178, 139, 10.1006/jmsp.1996.0167

Massie, 2003, The infrared absorption cross-section and refractive-index data in HITRAN, JQSRT, 82, 413, 10.1016/S0022-4073(03)00167-5

Di Lonardo, 2000, Infrared absorption cross-sections and integrated absorption intensities of HFC-125 and HFC-143a, JQSRT, 66, 129, 10.1016/S0022-4073(99)00212-5

Smith, 1998, Infrared absorption cross-sections and integrated absorption intensities of HFC-134 and HFC-143a vapour, JQSRT, 59, 437, 10.1016/S0022-4073(97)00114-3

Clerbaux, 1993, Infrared cross sections and global warming potentials of 10 alternative hydrohalocarbons, J Geophys Res, 98, 10491, 10.1029/93JD00390

Rinsland, 2005, Temperature-dependent infrared absorption cross sections of methyl cyanide (acetonitrile), JQSRT, 96, 271, 10.1016/j.jqsrt.2005.03.004

Allen, 2005, Low temperature mid-infrared cross-sections for peroxyacetyl nitrate (PAN) vapour, Atmos Chem Phys, 5, 3153, 10.5194/acp-5-3153-2005

Allen, 2005, Improved mid-infrared cross-sections for peroxyacetyl nitrate (PAN) vapour, Atmos Chem Phys, 5, 47, 10.5194/acp-5-47-2005

Remedios, 2007, Detection of organic compound signatures in infra-red, limb emission spectra observed by the MIPAS-B2 balloon instrument, Atmos Chem Phys, 7, 1599, 10.5194/acp-7-1599-2007

Rinsland, 2008, Quantitative measurement of integrated band intensities of benzene vapor in the mid-infrared at 278, 298, and 323K, JQSRT, 109, 2511, 10.1016/j.jqsrt.2008.04.007

Mérienne, 2001, Improved data set for the Herzberg band systems of 16O2, J Mol Spectrosc, 207, 120, 10.1006/jmsp.2001.8314

Chance, 2005, Ultraviolet and visible spectroscopy and spaceborne remote sensing of the Earth's atmosphere, C R Phys, 6, 836, 10.1016/j.crhy.2005.07.010

Bass, 1981, UV absorption cross-sections for ozone: the temperature dependence, J Photochem, 17, 41, 10.1016/0047-2670(81)85271-9

Bass, 1985, The ultraviolet cross-sections of ozone: I—the measurements, 606

Bass, 1985, The ultraviolet cross-sections of ozone: II—results and temperature dependence, 611

Liu, 2007, Impact of using different ozone cross sections on ozone profile retrievals from Global Ozone Monitoring Experiment (GOME) ultraviolet measurements, Atmos Chem Phys, 7, 3571, 10.5194/acp-7-3571-2007

Daumont, 1992, Ozone UV spectroscopy I: absorption cross-sections at room temperature, J Atmos Chem, 15, 145, 10.1007/BF00053756

Brion, 1993, High-resolution laboratory absorption cross section of O3. Temperature effect, Chem Phys Lett, 213, 610, 10.1016/0009-2614(93)89169-I

Malicet, 1995, Ozone UV spectroscopy, II. Absorption cross sections and temperature dependence, J Atmos Chem, 21, 263, 10.1007/BF00696758

Brion, 1998, Absorption spectra measurements for the ozone molecule in the 350–830nm region, J Atmos Chem, 30, 291, 10.1023/A:1006036924364

Fleischmann, 2004, New ultraviolet absorption cross-sections of BrO at atmospheric temperatures measured by time-windowing Fourier transform spectroscopy, J Photochem Photobiol A, 168, 117, 10.1016/j.jphotochem.2004.03.026

Wilmouth, 1999, Fourier transform ultraviolet spectroscopy of the A 2Π3/2←X 2Π1/2 transition of BrO, J Phys Chem A, 103, 8935, 10.1021/jp991651o

Meller, 2000, Temperature dependence of the absorption cross sections of formaldehyde between 223 and 323K in the wavelength range 225–375nm, J Geophys Res, 105, 7089, 10.1029/1999JD901074

Cantrell, 1990, Temperature-dependent formaldehyde cross sections in the near-ultraviolet spectral region, J Phys Chem, 94, 3902, 10.1021/j100373a008

Carlos Gómez Martín, 2005, Spectroscopic studies of the I2/O3 photochemistry: part 1: determination of the absolute absorption cross sections of iodine oxides of atmospheric relevance, J Photochem Photobiol A, 176, 15, 10.1016/j.jphotochem.2005.09.024

Saiz-Lopez, 2007, First observations of iodine oxide from space, Geophys Res Lett, 34, 12812, 10.1029/2007GL030111

Warneck, 1964, Ultraviolet absorption of SO2: dissociation energies of SO2 and SO, J Chem Phys, 40, 1132, 10.1063/1.1725260

Vandaele, 1994, SO2 absorption cross-section measurement in the UV using a Fourier transform spectrometer, J Geophys Res, 99, 25599, 10.1029/94JD02187

Woods, 1980, High-resolution spectroscopy of SO2 using a frequency-doubled pulsed dye laser, with application to the remote sensing of atmospheric pollutants, Opt Commun, 33, 281, 10.1016/0030-4018(80)90244-8

Vattulainen, 1997, Experimental determination of SO2, C2H2, and O2 UV absorption cross sections at elevated temperatures and pressures, Appl Spectrosc, 51, 1311, 10.1366/0003702971942312

Wu, 2000, Measurements of high-, room-, and low-temperature photoabsorption cross sections of SO2 in the 2080- to 2950-A region, with application to Io, Icarus, 145, 289, 10.1006/icar.1999.6322

Wu, 1981, SO2 and CS2 cross section data in the ultraviolet region, Geophys Res Lett, 8, 769, 10.1029/GL008i007p00769

Thompson, 1975, Measurements of SO2 absorption coefficients using a tunable dye laser, J Appl Phys, 46, 3040, 10.1063/1.321995

Rufus, 2003, High-resolution photoabsorption cross section measurements of SO2, 2: 220 to 325nm at 295K, J Geophys Res, 108

Manatt, 1993, A compilation of the absorption cross-sections of SO2 from 106 to 403nm, JQSRT, 50, 267, 10.1016/0022-4073(93)90077-U

McGee, 1987, SO2 absorption cross sections in the near UV, JQSRT, 37, 165, 10.1016/0022-4073(87)90020-3

Leroy, 1983, Spectres d’absorption dans le proche ultraviolet de CS2 et SO2 entre 200 et 300K, Moon Planets, 29, 177, 10.1007/BF00928323

Hearn, 1991, The near uv absorption spectrum of CS2 and SO2 at 300K, JQSRT, 45, 69, 10.1016/0022-4073(91)90101-U

Brassington, 1981, Sulfur dioxide absorption cross-section measurements from 290 to 317nm, Appl Opt, 20, 3774, 10.1364/AO.20.003774

Bogumil, 2003, Measurements of molecular absorption spectra with the SCIAMACHY pre-flight model: instrument characterization and reference data for atmospheric remote-sensing in the 230–2380nm region, J Photochem Photobiol A, 157, 167, 10.1016/S1010-6030(03)00062-5

Ahmed, 1992, Quantitative photoabsorption and fluorescence spectroscopy of SO2 at 188–231 and 278.7–320nm, JQSRT, 47, 359, 10.1016/0022-4073(92)90038-6

Danielache, 2008, High-precision spectroscopy of 32S, 33S, and 34S sulfur dioxide: ultraviolet absorption cross sections and isotope effects, J Geophys Res, 113

Sidebottom, 1972, Photooxidation of sulfur dioxide, Environmental Science & Technology, 6, 72, 10.1021/es60060a001

Clements, 1933, On the absorption spectrum of sulphur dioxide, Phys Rev, 47, 224, 10.1103/PhysRev.47.224

Sprague, 1995, SO2 absorption cross-section measurements from 320 to 405nm, JQSRT, 53, 349, 10.1016/0022-4073(95)90011-X

Vandaele AC, Hermans C, Fally S. Fourier transform measurements of SO2 absorption cross sections: II. Temperature dependence in the 29000–44500cm−1 (225–345nm) region. JQSRT 2009; submitted for publication.

Hermans C, Vandaele AC, Fally S. Fourier transform measurements of SO2 absorption cross sections: I. Temperature dependence in the 23500–29000cm−1 (345–425nm) region. JQSRT 2009; this issue, doi:10.1016/j.jqsrt.2009.01.031.

WHO air quality guidelines for Europe, 2nd ed. WHO Regional Publications, European Series no. 91, Copenhagen, Denmark, ISBN 92-890-1358-3, ISSN 0378-2255, 2000.

Finlayson-Pitts, 2000

Volkamer, 1998, Correction of the oxygen interference with UV spectroscopic (DOAS) measurements of monocyclic aromatic hydrocarbons in the atmosphere, Atmos Environ, 32, 3731, 10.1016/S1352-2310(98)00095-8

Kim, 1985, Infrared polar brightening on Jupiter: III. Spectrometry from the Voyager 1 IRIS experiment, Icarus, 64, 233, 10.1016/0019-1035(85)90088-0

Bézard, 2001, Benzene on the giant planets, Icarus, 154, 492, 10.1006/icar.2001.6719

Coustenis, 2003, Titan's atmosphere from ISO mid-infrared spectroscopy, Icarus, 161, 383, 10.1016/S0019-1035(02)00028-3

Bruston, 1994, Laboratory studies of organic chemistry in planetary atmospheres: from simulation experiments to spectroscopic determinations, J Geophys Res, 99, 19047, 10.1029/94JE01086

Shindo, 2001, Spectroscopy of two organic compounds involved in Titan's atmosphere chemistry: tetracetylene (C8H2) and vinylacetylene (CH2CHCCH), Bull Am Astron Soc, 1109

Wu, 2000, Cross section measurements of gaseous and liquid H2O, D2O, and C6H6, Bull Am Astron Soc, 1646

Okruss, 1999, High resolution UV laser spectroscopy of jet-cooled benzene molecules: complete rotational analysis of the S1←S0 610 (l=±1) band, J Mol Spectrosc, 193, 293, 10.1006/jmsp.1998.7742

Fally S, Carleer M, Vandaele AC. UV Fourier transform absorption cross sections of benzene, toluene, meta-, ortho-, and para-xylene. JQSRT 2009; this issue, doi:10.1016/j.jqsrt.2008.11.014.

Etzkorn, 1999, Gas-phase absorption cross sections of 24 monocyclic aromatic hydrocarbons in the UV and IR spectral ranges, Atmos Environ, 33, 525, 10.1016/S1352-2310(98)00289-1

Suto, 1992, Quantitative photoabsorption and fluorescence spectroscopy of benzene, naphthalene, and some derivatives at 106–295nm, JQSRT, 48, 79, 10.1016/0022-4073(92)90008-R

Trost, 1997, UV-absorption cross sections of a series of monocyclic aromatic compounds, Atmos Environ, 31, 3999, 10.1016/S1352-2310(97)00214-8

Wagner, 2005, Mid-infrared extinction spectra and optical constants of supercooled water droplets, J Phys Chem A, 109, 7099, 10.1021/jp051942z

Downing, 1975, Optical constants of water in the infrared, J Geophys Res, 80, 1656, 10.1029/JC080i012p01656

Warren, 2008, Optical constants of ice from the ultraviolet to the microwave: a revised compilation, J Geophys Res, 113

Warren, 1984, Optical constants of ice from the ultraviolet to the microwave, Appl Opt, 23, 1206, 10.1364/AO.23.001206

Clapp, 1995, Frequency-dependent optical constants of water ice obtained directly from aerosol extinction spectra, J Phys Chem, 99, 6317, 10.1021/j100017a010

Matzler, 2006, Microwave dielectric properties of ice, vol. 52, 455

Lund Myhre, 2003, Spectroscopic study of aqueous H2SO4 at different temperatures and compositions: variations in dissociation and optical properties, J Phys Chem A, 107, 1979, 10.1021/jp026576n

Lund Myhre, 2005, Optical constants of HNO3/H2O and H2SO4/HNO3/H2O at low temperatures in the infrared region, J Phys Chem A, 109, 7166, 10.1021/jp0508406

Norman, 2002, Ternary H2O/HNO3/H2O Optical constants: new measurements from aerosol spectroscopy under stratospheric conditions, J Phys Chem A, 106, 6075, 10.1021/jp014138v

Biermann, 2000, Absorption spectra and optical constants of binary and ternary solutions of H2SO4, HNO3, and H2O in the mid infrared at atmospheric temperatures, J Phys Chem A, 104, 783, 10.1021/jp992349i

Tennyson J, Bernath PF, Brown LR, Campargue A, Carleer MR, Csaszar AG, et al. IUPAC critical evaluation of the rotational–vibrational spectra of water vapor. Part I: energy Levels and transition wavenumbers for H217O and H218O. JQSRT 2009; this issue, doi:10.1016/j.jqsrt.2009.02.014.

Bernath, 2005

S˘imečková, 2006, Einstein A-coefficients and statistical weights for molecular absorption transitions in the HITRAN database, JQSRT, 98, 130, 10.1016/j.jqsrt.2005.07.003

Rothman, 1998, The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition, JQSRT, 60, 665, 10.1016/S0022-4073(98)00078-8

De Bièvre, 1984, Isotopic abundances and atomic weights of the elements, J Phys Chem Ref Data, 13, 809, 10.1063/1.555720