The Good, The Bad and The Ugly: A Mathematical Model Investigates the Differing Outcomes Among CoVID-19 Patients

Springer Science and Business Media LLC - Tập 100 Số 4 - Trang 673-681 - 2020
Sarthak Sahoo1, Siddharth Jhunjhunwala1, Mohit Kumar Jolly1
1Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, 560012, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Kahn JS, McIntosh K (2005) History and recent advances in coronavirus discovery. Pediatr Infect Dis J. https://doi.org/10.1097/01.inf.0000188166.17324.60

Van Der Hoek L (2007) Human coronaviruses: what do they cause? Antivir Ther 12:651–658

Ye ZW, Yuan S, Yuen KS et al (2020) Zoonotic origins of human coronaviruses. Int J Biol Sci 16:1686–1697

De Wit E, Van Doremalen N, Falzarano D, Munster VJ (2016) SARS and MERS: Recent insights into emerging coronaviruses. Nat Rev Microbiol 14:523–534

Petrosillo N, Viceconte G, Ergonul O et al (2020) COVID-19, SARS and MERS: are they closely related? Clin Microbiol Infect 5:729–734

Chan JWM, Ng CK, Chan YH et al (2003) Short term outcome and risk factors for adverse clinical outcomes in adults with severe acute respiratory syndrome (SARS). Thorax. https://doi.org/10.1136/thorax.58.8.686

Yang YM, Hsu CY, Lai CC et al (2017) Impact of comorbidity on fatality rate of patients with middle east respiratory syndrome. Sci Rep. https://doi.org/10.1038/s41598-017-10402-1

Sanyaolu A, Okorie C, Marinkovic A et al (2020) Comorbidity and its impact on patients with COVID-19. SN Compr Clin Med. https://doi.org/10.1007/s42399-020-00363-4

Li X, Xu S, Yu M et al (2020) Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan. J Allergy Clin Immunol. https://doi.org/10.1016/j.jaci.2020.04.006

Codo AC, Davanzo GG, de Monteiro LB et al (2020) Elevated glucose levels favor SARS-CoV-2 infection and monocyte response through a HIF-1α/glycolysis-dependent axis. Cell Metab. https://doi.org/10.1016/j.cmet.2020.07.007

Richardson S, Hirsch JS, Narasimhan M et al (2020) Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. J Am Med Assoc. https://doi.org/10.1001/jama.2020.6775

Zhang H, Penninger JM, Li Y et al (2020) Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. https://doi.org/10.1007/s00134-020-05985-9

Hoffmann M, Kleine-Weber H, Schroeder S et al (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. https://doi.org/10.1016/j.cell.2020.02.052

Tikellis C, Thomas MC (2012) Angiotensin-converting enzyme 2 (ACE2) is a key modulator of the renin angiotensin system in health and disease. Int J Pept 2012:256294

Imai Y, Kuba K, Rao S et al (2005) Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. https://doi.org/10.1038/nature03712

Yan T, Xiao R, Lin G (2020) Angiotensin-converting enzyme 2 in severe acute respiratory syndrome coronavirus and SARS-CoV-2: a double-edged sword? FASEB J 34:6017–6026

Singh AK, Gupta R, Misra A (2020) Comorbidities in COVID-19: outcomes in hypertensive cohort and controversies with renin angiotensin system blockers. Diabetes Metab Syndr Clin Res Rev. https://doi.org/10.1016/j.dsx.2020.03.016

Zaim S, Chong JH, Sankaranarayanan V, Harky A (2020) COVID-19 and multiorgan response. Curr Probl Cardiol

Hikmet F, Mear L, Uhlen M, Lindskog C (2020) The protein expression profile of ACE2 in human tissues. bioRxiv. https://doi.org/10.1101/2020.03.31.016048

Han X, Zhou Z, Fei L et al (2020) Construction of a human cell landscape at single-cell level. Nature. https://doi.org/10.1038/s41586-020-2157-4

Vieira Braga FA, Kar G, Berg M et al (2019) A cellular census of human lungs identifies novel cell states in health and in asthma. Nat Med. https://doi.org/10.1038/s41591-019-0468-5

Chu H, Chan JFW, Wang Y et al (2020) Comparative replication and immune activation profiles of SARS-CoV-2 and SARS-CoV in human lungs: an ex vivo study with implications for the pathogenesis of COVID-19. Clin Infect Dis. https://doi.org/10.1093/cid/ciaa410

Li H, Liu L, Zhang D et al (2020) SARS-CoV-2 and viral sepsis: observations and hypotheses. Lancet 395:1517–1520

Mossel EC, Wang J, Jeffers S et al (2008) SARS-CoV replicates in primary human alveolar type II cell cultures but not in type I-like cells. Virology. https://doi.org/10.1016/j.virol.2007.09.045

Liu Y, Yang Y, Zhang C et al (2020) Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci China Life Sci. https://doi.org/10.1007/s11427-020-1643-8

Blanco-Melo D, Nilsson-Payant BE, Liu WC et al (2020) Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell. https://doi.org/10.1016/j.cell.2020.04.026

McKechnie JL, Blish CA (2020) The innate immune system: fighting on the front lines or fanning the flames of COVID-19? Cell Host Microbe 27:863–869

Du SQ, Yuan W (2020) Mathematical modeling of interaction between innate and adaptive immune responses in COVID-19 and implications for viral pathogenesis. J Med Virol. https://doi.org/10.1002/jmv.25866

Chen Z, John Wherry E (2020) T cell responses in patients with COVID-19. Nat Rev Immunol 20:529–536

Stephen-Victor E, Das M, Karnam A et al (2020) Potential of regulatory T cell-based therapies in the management of severe COVID-19. Eur Respir J. https://doi.org/10.1183/13993003.02182-2020

Hill EM, Petrou S, De Lusignan S et al (2019) Seasonal influenza: Modelling approaches to capture immunity propagation. PLoS Comput Biol. https://doi.org/10.1371/journal.pcbi.1007096

Sambaturu N, Mukherjee S, López-García M et al (2018) Role of genetic heterogeneity in determining the epidemiological severity of H1N1 influenza. PLoS Comput Biol. https://doi.org/10.1371/journal.pcbi.1006069

Li Z, Teng Z, Miao H (2017) Modeling and control for HIV/AIDS transmission in china based on data from 2004 to 2016. Comput Math Methods Med. https://doi.org/10.1155/2017/8935314

Liang P, Zu J, Zhuang G (2018) A literature review of mathematical models of hepatitis B virus transmission applied to immunization strategies from 1994 to 2015. J Epidemiol 28:221–229

Ivorra B, Ferrández MR, Vela-Pérez M, Ramos AM (2020) Mathematical modeling of the spread of the coronavirus disease 2019 (COVID-19) taking into account the undetected infections. The case of China. Commun Nonlinear Sci Numer Simul. https://doi.org/10.1016/j.cnsns.2020.105303

Kucharski AJ, Russell TW, Diamond C et al (2020) Early dynamics of transmission and control of COVID-19: a mathematical modelling study. Lancet Infect Dis. https://doi.org/10.1016/S1473-3099(20)30144-4

Lin Q, Zhao S, Gao D et al (2020) A conceptual model for the coronavirus disease 2019 (COVID-19) outbreak in Wuhan, China with individual reaction and governmental action. Int J Infect Dis. https://doi.org/10.1016/j.ijid.2020.02.058

Wu JT, Leung K, Leung GM (2020) Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. Lancet. https://doi.org/10.1016/S0140-6736(20)30260-9

Shim E, Meyers LA, Galvani AP (2011) Optimal H1N1 vaccination strategies based on self-interest versus group interest. BMC Public Health. https://doi.org/10.1186/1471-2458-11-S1-S4

Kamyad AV, Akbari R, Heydari AA, Heydari A (2014) Mathematical modeling of transmission dynamics and optimal control of vaccination and treatment for hepatitis B virus. Comput Math Methods Med. https://doi.org/10.1155/2014/475451

Tang B, Wang X, Li Q et al (2020) Estimation of the transmission risk of the 2019-nCoV and its implication for public health interventions. J Clin Med. https://doi.org/10.3390/jcm9020462

Leung K, Wu JT, Liu D, Leung GM (2020) First-wave COVID-19 transmissibility and severity in China outside Hubei after control measures, and second-wave scenario planning: a modelling impact assessment. Lancet. https://doi.org/10.1016/S0140-6736(20)30746-7

Perelson AS, Ribeiro RM (2013) Modeling the within-host dynamics of HIV infection. BMC Biol 11:96

Perelson AS (2002) Modelling viral and immune system dynamics. Nat Rev Immunol 2:28–36

Hernandez-Vargas EA, Velasco-Hernandez JX (2020) In-host modelling of COVID-19 kinetics in humans. medRxiv. https://doi.org/10.1101/2020.03.26.20044487

Baral S, Antia R, Dixit NM (2019) A dynamical motif comprising the interactions between antigens and CD8 T cells may underlie the outcomes of viral infections. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1902178116

Sahoo S, Hari K, Jhunjhunwala S, Jolly MK (2020) Mechanistic modeling of the SARS-CoV-2 and immune system interplay unravels design principles for diverse clinicopathological outcomes. bioRxiv. https://doi.org/10.1101/2020.05.16.097238

Kim SE, Jeong HS, Yu Y et al (2020) Viral kinetics of SARS-CoV-2 in asymptomatic carriers and presymptomatic patients. Int J Infect Dis. https://doi.org/10.1016/j.ijid.2020.04.083

Quinn KM, Fox A, Harland KL et al (2018) Age-related decline in primary CD8+ T cell responses is associated with the development of senescence in virtual memory CD8+ T cells. Cell Rep. https://doi.org/10.1016/j.celrep.2018.05.057

Fung M, Babik JM (2020) COVID-19 in immunocompromised hosts: what we know so far. Clin Infect Dis. https://doi.org/10.1093/cid/ciaa863

Langford BJ, So M, Raybardhan S et al (2020) Bacterial co-infection and secondary infection in patients with COVID-19: a living rapid review and meta-analysis. Clin Microbiol Infect. https://doi.org/10.1016/j.cmi.2020.07.016

Lucas C, Wong P, Klein J et al (2020) Longitudinal immunological analyses reveal inflammatory misfiring in severe COVID-19 patients. medRxiv. https://doi.org/10.1101/2020.06.23.20138289

Diao B, Wang C, Tan Y et al (2020) Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19). Front Immunol. https://doi.org/10.3389/fimmu.2020.00827

Zheng M, Gao Y, Wang G et al (2020) Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol Immunol 17:533–535

Toniati P, Piva S, Cattalini M et al (2020) Tocilizumab for the treatment of severe COVID-19 pneumonia with hyperinflammatory syndrome and acute respiratory failure: a single center study of 100 patients in Brescia. Italy. Autoimmun Rev 19:102568

Panichaya P, Thaweerat W, Uthaisan J (2020) Prolonged viral persistence in COVID-19 second trimester pregnant patient. Eur J Obstet Gynecol Reprod Biol 250:263

Huang C-TC-G, Dutta A et al (2020) Relative COVID-19 viral persistence and antibody kinetics. medRxiv. https://doi.org/10.1101/2020.07.01.20143917