The Good, The Bad and The Ugly: A Mathematical Model Investigates the Differing Outcomes Among CoVID-19 Patients
Tóm tắt
Từ khóa
Tài liệu tham khảo
Kahn JS, McIntosh K (2005) History and recent advances in coronavirus discovery. Pediatr Infect Dis J. https://doi.org/10.1097/01.inf.0000188166.17324.60
Ye ZW, Yuan S, Yuen KS et al (2020) Zoonotic origins of human coronaviruses. Int J Biol Sci 16:1686–1697
De Wit E, Van Doremalen N, Falzarano D, Munster VJ (2016) SARS and MERS: Recent insights into emerging coronaviruses. Nat Rev Microbiol 14:523–534
Petrosillo N, Viceconte G, Ergonul O et al (2020) COVID-19, SARS and MERS: are they closely related? Clin Microbiol Infect 5:729–734
Chan JWM, Ng CK, Chan YH et al (2003) Short term outcome and risk factors for adverse clinical outcomes in adults with severe acute respiratory syndrome (SARS). Thorax. https://doi.org/10.1136/thorax.58.8.686
Yang YM, Hsu CY, Lai CC et al (2017) Impact of comorbidity on fatality rate of patients with middle east respiratory syndrome. Sci Rep. https://doi.org/10.1038/s41598-017-10402-1
Sanyaolu A, Okorie C, Marinkovic A et al (2020) Comorbidity and its impact on patients with COVID-19. SN Compr Clin Med. https://doi.org/10.1007/s42399-020-00363-4
Li X, Xu S, Yu M et al (2020) Risk factors for severity and mortality in adult COVID-19 inpatients in Wuhan. J Allergy Clin Immunol. https://doi.org/10.1016/j.jaci.2020.04.006
Codo AC, Davanzo GG, de Monteiro LB et al (2020) Elevated glucose levels favor SARS-CoV-2 infection and monocyte response through a HIF-1α/glycolysis-dependent axis. Cell Metab. https://doi.org/10.1016/j.cmet.2020.07.007
Richardson S, Hirsch JS, Narasimhan M et al (2020) Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. J Am Med Assoc. https://doi.org/10.1001/jama.2020.6775
Zhang H, Penninger JM, Li Y et al (2020) Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. https://doi.org/10.1007/s00134-020-05985-9
Hoffmann M, Kleine-Weber H, Schroeder S et al (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. https://doi.org/10.1016/j.cell.2020.02.052
Tikellis C, Thomas MC (2012) Angiotensin-converting enzyme 2 (ACE2) is a key modulator of the renin angiotensin system in health and disease. Int J Pept 2012:256294
Imai Y, Kuba K, Rao S et al (2005) Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. https://doi.org/10.1038/nature03712
Yan T, Xiao R, Lin G (2020) Angiotensin-converting enzyme 2 in severe acute respiratory syndrome coronavirus and SARS-CoV-2: a double-edged sword? FASEB J 34:6017–6026
Singh AK, Gupta R, Misra A (2020) Comorbidities in COVID-19: outcomes in hypertensive cohort and controversies with renin angiotensin system blockers. Diabetes Metab Syndr Clin Res Rev. https://doi.org/10.1016/j.dsx.2020.03.016
Zaim S, Chong JH, Sankaranarayanan V, Harky A (2020) COVID-19 and multiorgan response. Curr Probl Cardiol
Hikmet F, Mear L, Uhlen M, Lindskog C (2020) The protein expression profile of ACE2 in human tissues. bioRxiv. https://doi.org/10.1101/2020.03.31.016048
Han X, Zhou Z, Fei L et al (2020) Construction of a human cell landscape at single-cell level. Nature. https://doi.org/10.1038/s41586-020-2157-4
Vieira Braga FA, Kar G, Berg M et al (2019) A cellular census of human lungs identifies novel cell states in health and in asthma. Nat Med. https://doi.org/10.1038/s41591-019-0468-5
Chu H, Chan JFW, Wang Y et al (2020) Comparative replication and immune activation profiles of SARS-CoV-2 and SARS-CoV in human lungs: an ex vivo study with implications for the pathogenesis of COVID-19. Clin Infect Dis. https://doi.org/10.1093/cid/ciaa410
Li H, Liu L, Zhang D et al (2020) SARS-CoV-2 and viral sepsis: observations and hypotheses. Lancet 395:1517–1520
Mossel EC, Wang J, Jeffers S et al (2008) SARS-CoV replicates in primary human alveolar type II cell cultures but not in type I-like cells. Virology. https://doi.org/10.1016/j.virol.2007.09.045
Liu Y, Yang Y, Zhang C et al (2020) Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci China Life Sci. https://doi.org/10.1007/s11427-020-1643-8
Blanco-Melo D, Nilsson-Payant BE, Liu WC et al (2020) Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell. https://doi.org/10.1016/j.cell.2020.04.026
McKechnie JL, Blish CA (2020) The innate immune system: fighting on the front lines or fanning the flames of COVID-19? Cell Host Microbe 27:863–869
Du SQ, Yuan W (2020) Mathematical modeling of interaction between innate and adaptive immune responses in COVID-19 and implications for viral pathogenesis. J Med Virol. https://doi.org/10.1002/jmv.25866
Stephen-Victor E, Das M, Karnam A et al (2020) Potential of regulatory T cell-based therapies in the management of severe COVID-19. Eur Respir J. https://doi.org/10.1183/13993003.02182-2020
Hill EM, Petrou S, De Lusignan S et al (2019) Seasonal influenza: Modelling approaches to capture immunity propagation. PLoS Comput Biol. https://doi.org/10.1371/journal.pcbi.1007096
Sambaturu N, Mukherjee S, López-García M et al (2018) Role of genetic heterogeneity in determining the epidemiological severity of H1N1 influenza. PLoS Comput Biol. https://doi.org/10.1371/journal.pcbi.1006069
Li Z, Teng Z, Miao H (2017) Modeling and control for HIV/AIDS transmission in china based on data from 2004 to 2016. Comput Math Methods Med. https://doi.org/10.1155/2017/8935314
Liang P, Zu J, Zhuang G (2018) A literature review of mathematical models of hepatitis B virus transmission applied to immunization strategies from 1994 to 2015. J Epidemiol 28:221–229
Ivorra B, Ferrández MR, Vela-Pérez M, Ramos AM (2020) Mathematical modeling of the spread of the coronavirus disease 2019 (COVID-19) taking into account the undetected infections. The case of China. Commun Nonlinear Sci Numer Simul. https://doi.org/10.1016/j.cnsns.2020.105303
Kucharski AJ, Russell TW, Diamond C et al (2020) Early dynamics of transmission and control of COVID-19: a mathematical modelling study. Lancet Infect Dis. https://doi.org/10.1016/S1473-3099(20)30144-4
Lin Q, Zhao S, Gao D et al (2020) A conceptual model for the coronavirus disease 2019 (COVID-19) outbreak in Wuhan, China with individual reaction and governmental action. Int J Infect Dis. https://doi.org/10.1016/j.ijid.2020.02.058
Wu JT, Leung K, Leung GM (2020) Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. Lancet. https://doi.org/10.1016/S0140-6736(20)30260-9
Shim E, Meyers LA, Galvani AP (2011) Optimal H1N1 vaccination strategies based on self-interest versus group interest. BMC Public Health. https://doi.org/10.1186/1471-2458-11-S1-S4
Kamyad AV, Akbari R, Heydari AA, Heydari A (2014) Mathematical modeling of transmission dynamics and optimal control of vaccination and treatment for hepatitis B virus. Comput Math Methods Med. https://doi.org/10.1155/2014/475451
Tang B, Wang X, Li Q et al (2020) Estimation of the transmission risk of the 2019-nCoV and its implication for public health interventions. J Clin Med. https://doi.org/10.3390/jcm9020462
Leung K, Wu JT, Liu D, Leung GM (2020) First-wave COVID-19 transmissibility and severity in China outside Hubei after control measures, and second-wave scenario planning: a modelling impact assessment. Lancet. https://doi.org/10.1016/S0140-6736(20)30746-7
Hernandez-Vargas EA, Velasco-Hernandez JX (2020) In-host modelling of COVID-19 kinetics in humans. medRxiv. https://doi.org/10.1101/2020.03.26.20044487
Baral S, Antia R, Dixit NM (2019) A dynamical motif comprising the interactions between antigens and CD8 T cells may underlie the outcomes of viral infections. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1902178116
Sahoo S, Hari K, Jhunjhunwala S, Jolly MK (2020) Mechanistic modeling of the SARS-CoV-2 and immune system interplay unravels design principles for diverse clinicopathological outcomes. bioRxiv. https://doi.org/10.1101/2020.05.16.097238
Kim SE, Jeong HS, Yu Y et al (2020) Viral kinetics of SARS-CoV-2 in asymptomatic carriers and presymptomatic patients. Int J Infect Dis. https://doi.org/10.1016/j.ijid.2020.04.083
Quinn KM, Fox A, Harland KL et al (2018) Age-related decline in primary CD8+ T cell responses is associated with the development of senescence in virtual memory CD8+ T cells. Cell Rep. https://doi.org/10.1016/j.celrep.2018.05.057
Fung M, Babik JM (2020) COVID-19 in immunocompromised hosts: what we know so far. Clin Infect Dis. https://doi.org/10.1093/cid/ciaa863
Langford BJ, So M, Raybardhan S et al (2020) Bacterial co-infection and secondary infection in patients with COVID-19: a living rapid review and meta-analysis. Clin Microbiol Infect. https://doi.org/10.1016/j.cmi.2020.07.016
Lucas C, Wong P, Klein J et al (2020) Longitudinal immunological analyses reveal inflammatory misfiring in severe COVID-19 patients. medRxiv. https://doi.org/10.1101/2020.06.23.20138289
Diao B, Wang C, Tan Y et al (2020) Reduction and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19). Front Immunol. https://doi.org/10.3389/fimmu.2020.00827
Zheng M, Gao Y, Wang G et al (2020) Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol Immunol 17:533–535
Toniati P, Piva S, Cattalini M et al (2020) Tocilizumab for the treatment of severe COVID-19 pneumonia with hyperinflammatory syndrome and acute respiratory failure: a single center study of 100 patients in Brescia. Italy. Autoimmun Rev 19:102568
Panichaya P, Thaweerat W, Uthaisan J (2020) Prolonged viral persistence in COVID-19 second trimester pregnant patient. Eur J Obstet Gynecol Reprod Biol 250:263
