The Functional Latent Block Model for the Co-Clustering of Electricity Consumption Curves
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abreu, 2012, Using pattern recognition to identify habitual behavior in residential electricity consumption, En. Buildngs, 49, 479, 10.1016/j.enbuild.2012.02.044
Aguilera, 2011, Using basis expansions for estimating functional PLS regression: applications with chemometric data, Chemometr. Intell. Lab. Syst., 104, 289, 10.1016/j.chemolab.2010.09.007
Akaike, 1974, A new look at the statistical model identification, IEEE Trans. Autom. Control, 19, 716, 10.1109/TAC.1974.1100705
Ben Slimen, 2016, Proc. 48th Conf. French Statistical Society, Montpellier
Biernacki, 2000, Assessing a mixture model for clustering with the integrated completed likelihood, IEEE Trans. Pattn Anal. Mach. Intell., 7, 719, 10.1109/34.865189
Bouveyron, 2015, The discriminative functional mixture model for the analysis of bike sharing systems, Ann. Appl. Statist., 9, 1726, 10.1214/15-AOAS861
Bouveyron, 2011, Model-based clustering of time series in group-specific functional subspaces, Adv. Data Anal. Classificn, 5, 281, 10.1007/s11634-011-0095-6
Hartigan, 1972, Direct clustering of a data matrix, J. Am. Statist. Ass., 67, 123, 10.1080/01621459.1972.10481214
Jacques, 2017, Model-based co-clustering for ordinal data
Jacques, 2014, Functional data clustering: a survey, Adv. Data Anal. Classificn, 8, 231, 10.1007/s11634-013-0158-y
Keribin, 2010, Proc. 42nd Conf. French Statistical Society, Marseille
Keyno, 2009, Forecasting electricity consumption by clustering data in order to decline the periodic variable's affects and simplification of the pattern, En. Conversn Mangmnt, 50, 829, 10.1016/j.enconman.2008.09.036
Lomet, 2012, Sélection de modèle pour la classification croisée de données continues
Melzi, 2017, A dedicated mixture model for clustering smart meter data: identification and analysis of electricity consumption behaviors, Energies, 10, article 1446, 10.3390/en10101446
Rand, 1971, Objective criteria for the evaluation of clustering methods, J. Am. Statist. Ass., 66, 846, 10.1080/01621459.1971.10482356