The First Integral Method and its Application for Deriving the Exact Solutions of a Higher-Order Dispersive Cubic-Quintic Nonlinear Schrödinger Equation
Tóm tắt
Từ khóa
Tài liệu tham khảo
E. J. Parkes and B. R. Duffy, “An automated tanh-function method for finding solitary wave solutions to non-linear evolution equation,” Comput. Phys. Commun., 98, 288–300 (1996).
E. G. Fan, “Extended tanh-function method and its applications to nonlinear equations,” Phys. Lett. A, 277, 212–218 (2000).
Z. Y. Yan, “New explicit traveling wave solutions for two new integrable coupled nonlinear evolution equations,” Phys. Lett. A, 292, 100–106 (2001).
S. Liu and Z. Fu, “Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations,” Phys. Lett. A, 289, 69–74 (2001).
Z. Y. Yan, “Abundant families of Jacobi elliptic function solutions of the (2+1)-dimensional integrable Davey–Stewartson-type equation via a new method,” Chaos Solitons Fract., 18, 299–309 (2003).
Z. T. Fu and S. K. Liu, “A new approach to solve nonlinear wave equations,” Commun. Theor. Phys., 39, 27–30 (2003).
M. L. Wang, “Solitary wave solutions for variant Boussinesq equations,” Phys. Lett. A, 199, 169–172 (1995).
M. L. Wang, “Exact solutions for a compound KdV–Burgers equation,” Phys. Lett. A, 213, 279–287 (1996).
M. L. Wang, Y. B. Zhou, and Z. B. Li, “Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics,” Phys. Lett. A, 216, 67–75 (1996).
E. M. E. Zayed and A. H. Arnous, “DNA dynamics studied using the homogeneous balance method,” Chin. Phys. Lett., 29, 080203–080205 (2012).
M. L. Wang and Y. B. Zhou, “The periodic wave solutions for the Klein–Gordon–Schrödinger equations,” Phys. Lett. A, 318, 84–92 (2003).
Y. B. Zhou, M. L. Wang, and T. D. Miao, “The periodic wave solution and solitary wave solutions for a class of nonlinear partial differential equations,” Phys. Lett. A, 323, 77–88 (2004).
M. L. Wang and X. Z. Li, “Extended F-expansion method and periodic wave solutions for the generalized Zakharov equations,” Phys. Lett. A, 343, 48–54 (2005).
M. L. Wang and X. Z. Li, “Applications of F-expansion to periodic wave solutions for a new Hamiltonian amplitude equation,” Chaos Soliton Fract., 24, 1257–1268 (2005).
J. L. Zhang, M. L. Wang, and X. Z. Li, “The subsidiary ordinary differential equations and the exact solutions for the higher order dispersive nonlinear Schrödinger equation,” Phys. Lett. A, 357, 188–195 (2006).
M. L. Wang, J. L. Zhang, and X. Z. Li, “Various exact solutions for the nonlinear Schrödinger equation with two nonlinear terms,” Chaos Soliton Fract., 31, 594–601 (2007).
X. Z. Li and M. L. Wang, “A sub-ODE method for finding exact solutions of a generalized KdV and mKdV equation with highorder nonlinear terms,” Phys. Lett. A, 361, 115–118 (2007).
M. L. Wang, X. Z. Li, and J. L. Zhang, “Sub-ODE method and solitary wave solutions for higher order nonlinear Schrödinger equation,” Phys. Lett. A, 363, 96–101 (2007).
E. Yomba, “The modified extended Fan sub-equation method and its application to the (2+1)-dimensional Broer–Kaup–Kupershmidt equation,” Chaos Soliton Fract., 27, 187–196 (2006).
X. Y. Li, X. Z. Li, and M. L. Wang, “Extended F-expansion method and periodic wave solutions for Klein–Gordon–Schrödinger equations,” Commun. Theor. Phys., 45, 9–14 (2006).
J. H. He and X. H. Wu, “Exp-function method for nonlinear wave equations,” Chaos, Solitons Fract., 30, 700–708 (2006).
E. M. E. Zayed and M. A. M. Abdelaziz, “Exact solutions for the Schrodiner equation with variable coefficients using a generalized extended tanh-function, the sine-cosine and the Exp-function methods,” Appl. Math. Comput., 218, 2259–2268 (2011).
S. D. Zhu, “Exp-function method for the discrete mKdV lattice,” Int. J. Nonlinear Sci. Numer. Simul., 8, 465–469 (2007).
M. Wang, J. Zhang, and X. Li, “The (G′/ G)-expansion method and traveling wave solutions of nonlinear evolution equations in mathematical physics,” Phys. Lett. A, 372, 417–423 (2008).
S. Zhang, J. L. Tong, and W. Wang, “A generalized (G′/ G) -Expansion method for the mKdV equation with variable coefficients,” Phys. Lett. A, 372, 2254–2257 (2008).
E. M. E. Zayed and K. A. Gepreel,” The (G′/ G) -expansion method for finding traveling wave solutions of nonlinear partial differential equations in mathematical physics,” J. Math. Phys., 50, 13502–13513 (2009).
E. M. E. Zayed and K. A. Gepreel, “Some application of the (G′/ G) -expansion method to nonlinear partial differential equations,” Appl. Math. Comput., 212, 1–13 (2009).
E. M. E. Zayed, “New traveling wave solution for higher dimensional nonlinear evolution equations using a generalized (G′/ G) - expansion method,” J. Phys. A: Math. Theor., 42, 195202–195214 (2009).
E. M. E. Zayed, “The (G′/ G) -expansion method and its applications to some nonlinear evolution equations in the mathematical physics,” J. Appl. Math. Comput., 30, 89–103 (2009).
E. M. E. Zayed and M. A. M. Abdelaziz, “Traveling wave solution for the Burgers equation and the KdV equation with variable coefficients using a generalized (G′/ G) -expansion method,” Z. Naturforsch., 65a, 1065–1070 (2010).
Z. S. Feng, “The first integral method to study the Burgers–KdV equation,” J. Phys. A: Math. Gen., 35, 343–349 (2002).
B. Zheng, “Traveling wave solution for some nonlinear evolution equations by the first integral method,” WSEAS Trans. Math., 8, 249–258 (2011).
N. Taghizadeh, M. Mirzazadeh, and F. Farahrooz, “Exact solutions of the nonlinear Schrödinger equation by the first integral method,” J. Math. Anal. Appl., 374, 549–553 (2011).
P. Sharma and O. Y. Kushel, “The first integral method for Huxley equation,” Int. J. Nonlinear Sci., 10, 46–52 (2010).
A. Bekir and O. Unsal, “Analytical treatment of nonlinear evolution equations using the first integral method,” Pramana J. Phys., 79, 3–17 (2012).
B. Lu, H. Zhang, and F. Xie, “Traveling wave solutions of nonlinear partial equations by using the first integral method,” Appl. Math. Comput., 216, 1329–1336 (2010).
S. Zhu, “Exact solutions of the high-order dispersive cubic quintic nonlinear Schrödinger equation by the extended hyperbolic auxiliary equation method,” Chaos Soliton Fract., 34, 1608–1612 (2007).
J. L. Zhang, M. L. Wang, and X. Z. Li, “The subsidiary ordinary differential equations and the exact higher-order dispersive nonlinear Schrödinger equations,” Phys. Lett. A., 357, 188–195 (2006).
S. L. Palacios and J. M. Ferandez-Diaz, “Black optical solitons for media with parabolic nonlinearity law in the presence of fourth order dispersion,” Opt. Commun., 178, 457–460 (2000).
S. Tanev and D. I. Pushkarov, “Solitary wave propagation and bistability in the normal dispersion region of highly nonlinear optical fibers and waveguides,” Opt. Commun., 141, 322–328 (1997).
A. G. Shagalov, “Modulational instability of nonlinear waves in the range of zero dispersion,” Phys. Lett. A, 239, 41–45 (1998).
Z. S. Feng, “The first integral method to study the Burgers–KdV equation,” J. Phys. A: Math. Gen., 35, 343–349 (2002).
W. X. Ma and B. Fuchssteiner, “Explicit and exact solutions to Kolmogorov–Petrovskii–Piskunov equation,” Int. J. Nonlinear Mech. 31, 329–338 (1996).
Sirendaoreji, “A new auxiliary equation a nd exact traveling wave solutions of nonlinear equations,” Phys. Lett. A, 356, 124–130 (2006).
Sirendaoreji, “Exact traveling wave solutions for four forms of nonlinear Klein–Gordon equations,” Phys. Lett. A, 363, 440–447 (2007).
Sirendaoreji, “Auxiliary equation method and new solutions of Klein–Gordon equations,” Chaos, Soliton Fract., 31, 943–950 (2007).
E. M. E. Zayed, “A further improved (G′/ G) -expansion method and the extended tanh method for finding exact solutions of nonlinear PDEs,” WSEAS, Trans. Math., 10, 56–64 (2011).
E. M. E. Zayed, “Observations on a further improved (G′/ G) -expansion method and the extended tanh method for finding exact solutions of nonlinear PDEs,” J. Appl. Math. Inform., 30, 253–264 (2012).