The Fekete–Szegö functional associated with k-th root transformation using quasi-subordination
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abdel-Gawad, H.R. 2000. On the Fekete - Szegö problem for alpha-Quasi-convex functions. Tamkang Journal of Mathematics 31 (4): 251–255.
Ahuja, O.P., and M. Jahangiri. 1997. Fekete - Szegö problem for a unified class of analytic functions. Panamerican Mathematical Journal 7 (2): 67–78.
Ali, R.M., S.K. Lee, V. Ravichandran, and S. Subramaniam. 2009. The Fekete-Szego coefficient functional for transforms of analytic functions. Bulletin of the Iranian Mathematical Society 35 (2): 119–142.
Altintaş, O., and S. Owa. 1992. Majorizations and quasi-subordinations for certain analytic functions. Proceedings of the Japan Academy A 68 (7): 181–185.
Cho, N.E., and S. Owa. 2004. On the Fekete - Szegö problem for strongly $$\alpha $$ α -logarithmic Quasiconvex functions. Southeast Asian Bulletin of Mathematics 28 (3): 421–430.
Choi, J.H., Y.C. Kim, and T. Sugawa. 2007. A general approach to the Fekete - Szegö problem. Journal of the Mathematical Society of Japan 59 (3): 707–727.
Darus, M., and D.K. Thomas. 1998. $$\alpha $$ α -logarithmically convex functions. Indian Journal of Pure and Applied Mathematics 29 (10): 1049–1059.
Darus, M., and N. Tuneski. 2003. On the Fekete - Szegö problem for generalized close-to-convex functions. International Mathematical Journal 4 (6): 561–568.
Gurusamy, Palpandy, Janusz Sokól, and Srikandan Sivasubramanian. 2015. The FeketeSzegö functional associated with $$k$$ k -th root transformation using quasi-subordination. Comptes Rendus Mathematique 353 (7): 617–622.
Haji Mohd, M., and M.Darus. 2012. Fekete–Szegö problems for quasi-subordination classes. Abstract and Applied Analysis 2012: 192956-1–192956-14.
Keogh, F.R., and E.P. Merkes. 1969. A coefficient inequality for certain classes of analytic functions. Proceedings of the American Mathematical Society 20: 8–12.
Lee, S.Y. 1975. Quasi-subordinate functions and coefficient conjectures. Journal of the Korean Mathematical Society 12 (1): 43–50.
Lewandowski, Z., S. Miller, and E.Z. Lotkiewicz. 1976. Gamma-starlike functions. Annales Universitatis Mariae Curie-Sk lodowska A 28: 53–58.
Ma W., and Minda D. 1994. A unified treatment of some special classes of univalent functions, in: Proceedings of the Conference on Complex Analysis, (Tianjin, 1992), Conference Proceedings Lecture Notes Analysis, International Press, Cambridge, Mass, USA, 1 (1994), pp 157–169.
Miller, S.S., and P.T. Mocanu. 1981. Differential subordinations and univalent functions. Michigan Mathematical Journal 28: 151–171.
Miller, S.S., and P.T. Mocanu. 2000. Differential subordinations: theory and applications, Series of Monographs and Textbooks in Pure and Applied Mathematics, vol. 225. New York / Basel: Marcel Dekker Inc.
Ramachandran, C., S. Sivasubramanian, H.M. Srivastava, and A. Swaminathan. 2009. Coefficient inequalities for certain subclasses of analytic functions and their applications involving the Owa-Srivastava operator of fractional calculus. Mathematical Inequalities and Applications 12 (2): 351–363.
Ravichandran, V., M. Maslina Darus, M. Hussain Khan, and K.G. Subramanian. 2004. The Fekete-Szego coefficient functional for transforms of analytic functions. Australian Journal of Mathematical Analysis and Applications 1 (2): 7.
Ren, F.Y., S. Owa, and S. Fukui. 1991. Some inequalities on Quasi-subordinate functions. Bulletin of the Australian Mathematical Society 43 (2): 317–324.
Robertson, M.S. 1970. Quasi-subordination and coefficient conjectures. Bulletin of the American Mathematical Soceity 76: 1–9.
Ponnusamy, S. 1990. On a subclass of $$\lambda$$ λ -spiral-like functions. Mathematica (Cluj) 32 (55): no. 1, 67–76.