The FTO Gene and Diseases: The Role of Genetic Polymorphism, Epigenetic Modifications, and Environmental Factors

А. Н. Кучер1
1Research Institute of Medical Genetics, National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Peters, T., Ausmeier, K., and Rüther, U., Cloning of Fatso (Fto), a novel gene deleted by the Fused toes (Ft) mouse mutation, Mamm. Genome, 1999, vol. 10, pp. 983—986.

Online Mendelian Inheritance in Man. http://www.omim.org/. Accessed October, 2019.

The NHGRI-EBI Catalog of published genome-wide association studies. https://www.ebi.ac.uk/gwas/. Accessed October, 2019.

The UniProt Consortium, UniProt: the universal protein knowledgebase, Nucleic Acids Res., 2017, vol. 45, pp. D158—D169. http://www.uniprot.org/. Accessed October, 2019.

Jia, G., Yang, C.G., Yang, S., et al., Oxidative demethylation of 3-methylthymine and 3-methyluracil in single-stranded DNA and RNA by mouse and human FTO, FEBS Lett., 2008, vol. 582, nos. 23—24, pp. 3313—3319. https://doi.org/10.1016/j.febslet.2008.08.019

Berulava, T., Rahmann, S., Rademacher, K., et al., N6-adenosine methylation in miRNAs, PLoS One, 2015, vol. 10, no. 2. e0118438. https://doi.org/10.1371/journal.pone.0118438

Mauer, J., Luo, X., Blanjoie, A., et al., Reversible methylation of m6Am in the 5' cap controls mRNA stability, Nature, 2017, vol. 541, no. 7637, pp. 371—375. https://doi.org/10.1038/nature21022

GTExPortal. https://gtexportal.org/. Accessed October, 2019.

Berulava, T. and Horsthemke, B., The obesity-associated SNPs in intron 1 of the FTO gene affect primary transcript levels, Eur. J. Hum. Genet., 2010, vol. 18, no. 9, pp. 1054—1056. https://doi.org/10.1038/ejhg.2010.71

Stratigopoulos, G., LeDuc, C.A., Cremona, M.L., et al., Cut-like homeobox 1 (CUX1) regulates expression of the fat mass and obesity-associated and retinitis pigmentosa GTPase regulator-interacting protein-1-like (RPGRIP1L) genes and coordinates leptin receptor signaling, J. Biol. Chem., 2011, vol. 286, no. 3, pp. 2155—2170. https://doi.org/10.1074/jbc.M110.188482

Karra, E., O’Daly, O.G., Choudhury, A.I., et al., A link between FTO, ghrelin, and impaired brain food-cue responsivity, J. Clin. Invest., 2013, vol. 123, no. 8, pp. 3539—3551. https://doi.org/10.1172/JCI44403

Peters, U., North, K.E., Sethupathy, P., et al., A systematic mapping approach of 16q12.2/FTO and BMI in more than 20 000 African Americans narrows in on the underlying functional variation: results from the Population Architecture using Genomics and Epidemiology (PAGE) study, PLoS Genet., 2013, vol. 9, no. 1. e1003171. https://doi.org/10.1371/journal.pgen.1003171

Claussnitzer, M., Dankel, S.N., Kim, K.-H., et al., FTO obesity variant circuitry and adipocyte browning in humans, New Eng. J. Med., 2015, vol. 373, pp. 895—907. https://doi.org/10.1056/NEJMc1513316

National Center for Biotechnology Information. http://www.ncbi.nlm.nih.gov/. Accessed October, 2019.

Ensembl genome browser 88. http://www.ensembl. org/. Accessed October, 2019.

VISTA Enhancer Browser. https://enhancer.lbl.gov/. Accessed October, 2019.

Gene Ontology and GO Annotations. https://www. ebi.ac.uk/QuickGO/. Accessed October, 2019.

Expression Atlas. https://www.ebi.ac.uk/gxa/genes/. Accessed October, 2019.

Boissel, S., Reish, O., Proulx, K., et al., Loss-of-function mutation in the dioxygenase-encoding FTO gene causes severe growth retardation and multiple malformations, Am. J. Hum. Genet., 2009, vol. 85, no. 1, pp. 106—111. https://doi.org/10.1016/j.ajhg.2009.06.002

The portal for rare diseases and orphan drugs. https://www.orpha.net/. Accessed October, 2019.

GIANT: Genetic Investigation of Anthropometric Traits. http://portals.broadinstitute.org/collaboration/giant/. Accessed October, 2019.

Mao, L., Fang, Y., Campbell, M., and Southerland, W.M., Population differentiation in allele frequencies of obesity-associated SNPs, BMC Genomics, 2017, vol. 18, no. 1, p. 861. https://doi.org/10.1186/s12864-017-4262-9

Li, W., Liu, Q., Deng, X., et al., Association between obesity and puberty timing: a systematic review and meta-analysis, Int. J. Environ. Res., Public Health, 2017, vol. 14, no. 10. pii: E1266. https://doi.org/10.3390/ijerph14101266

Zav’yalova, L.G., Denisova, D.V., Simonova, G.I., et al., Association of polymorphisms of genes FTO and TCF7L2 with cardiometabolic parameters of the adolescents in Siberia, Byull. Sib. Otd. Ross. Akad. Med. Nauk, 2011, vol. 31, no. 5, pp. 5—13.

Kochetova, O.V., Korytina, G.F., Akhmadishina, L.Z., et al., Association of polymorphic variants of FTO and MC4R genes with obesity in a Tatar population, Russ. J. Genet., 2014, vol. 50, no. 12, pp. 1326—1333. https://doi.org/10.1134/S1022795414120059

Nikitin, A.G., Potapov, V.A., Brovkin, A.N., et al., Association of FTO, KCNJ11, SLC30A8, and CDKN2B polymorphisms with type 2 diabetes mellitus, Mol. Biol. (Moscow), 2015, vol. 49, no. 1, pp. 103—111. https://doi.org/10.1134/S0026893315010112

Huang, X., Zhao, J., Yang, M., et al., Association between FTO gene polymorphism (rs9939609 T/A) and cancer risk: a meta-analysis, Eur. J. Cancer Care (Engl.), 2017, vol. 26, no. 5. https://doi.org/10.1111/ecc.12464

Al-Serri, A., Al-Bustan, S.A., Kamkar, M., et al., Association of FTO rs9939609 with obesity in the Kuwaiti population: a Public Health Concern?, Med. Princ. Pract., 2018, vol. 27, no. 2, pp. 145—151. https://doi.org/10.1159/000486767

Sabarneh, A., Ereqat, S., Cauchi, S., et al., Common FTO rs9939609 variant and risk of type 2 diabetes in Palestine, BMC Med. Genet., 2018, vol. 19, no. 1, p. 156. https://doi.org/10.1186/s12881-018-0668-8

Zhang, Q., Xia, X., Fang, S., and Yuan, X., Relationship between fat mass and obesity-associated (FTO) gene polymorphisms with obesity and metabolic syndrome in ethnic Mongolians, Med. Sci. Monit., 2018, vol. 24, pp. 8232—8238. https://doi.org/10.12659/MSM.910928

Mozafarizadeh, M., Mohammadi, M., Sadeghi, S., et al., Evaluation of FTO rs9939609 and MC4R rs17782313 polymorphisms as prognostic biomarkers of obesity: a population-based cross-sectional study, Oman Med. J., 2019, vol. 34, no. 1, pp. 56—62. https://doi.org/10.5001/omj.2019.09

Fisher, E., Schulze, M.B., Stefan, N., et al., Association of the FTO rs9939609 single nucleotide polymorphism with C-reactive protein levels, Obesity (Silver Spring), 2009, vol. 17, no. 2, pp. 330—334. https://doi.org/10.1038/oby.2008.465

Tupikowska-Marzec, M., Kolačkov, K., Zdrojowy-Wełna, A., et al., The influence of FTO polymorphism rs9939609 on obesity, some clinical features, and disturbance of carbohydrate metabolism in patients with psoriasis, Biomed. Res. Int., 2019, article 7304345. https://doi.org/10.1155/2019/7304345

Naderi, M., Hashemi, M., Dejkam, N., et al., Association study of the FTO gene polymorphisms with the risk of pulmonary tuberculosis in a sample of Iranian population, Acta Microbiol. Immunol. Hung., 2017, vol. 64, no. 1, pp. 91—99. https://doi.org/10.1556/030.64.2017.010

Liu, A.L., Liao, H.Q., Zhou, J., et al., The role of FTO variants in the susceptibility of polycystic ovary syndrome and in vitro fertilization outcomes in Chinese women, Gynecol. Endocrinol., 2018, vol. 34, no. 8, pp. 719—723. https://doi.org/10.1080/09513590.2018.1441397

Saucedo, R., Valencia, J., Gutierrez, C., et al., Gene variants in the FTO gene are associated with adiponectin and TNF-alpha levels in gestational diabetes mellitus, Diabetol. Metab. Syndr., 2017, vol. 9, no. 32. https://doi.org/10.1186/s13098-017-0234-0

Wu, Z., Yang, Y., and Qiu, G., Association study between the polymorphisms of the fat mass- and obesity-associated gene with the risk of intervertebral disc degeneration in the Han Chinese population, Genet. Test. Mol. Biomarkers, 2013, vol. 17, no. 10, pp. 756—762. https://doi.org/10.1089/gtmb.2013.0225

Chen, J., Zhu, Q., Liu, G., et al., Fat mass and obesity-associated (FTO) gene polymorphisms are associated with risk of intervertebral disc degeneration in Chinese Han population: a case control study, Med. Sci. Monit., 2018, vol. 24, pp. 5598—5609. https://doi.org/10.12659/MSM.911101

González-Herrera, L., Zavala-Castro, J., Ayala-Cáceres, C., et al., Genetic variation of FTO: rs1421085 T>C, rs8057044 G>A, rs9939609 T>A, and copy number (CNV) in Mexican Mayan school-aged children with obesity/overweight and with normal weight, Am. J. Hum. Biol., 2019, vol. 31, no. 1. e23192. https://doi.org/10.1002/ajhb.23192

Chen, B., Li, Z., Chen, J., et al., Association of fat mass and obesity-associated and retinitis pigmentosa guanosine triphosphatase (GTPase) regulator-interacting protein-1 like polymorphisms with body mass index in Chinese women, Endocr. J., 2018, vol. 65, no. 7, pp. 783—791. https://doi.org/10.1507/endocrj.EJ17-0554

Shahid, S.U., Shabana, Cooper, J.A., et al., Genetic risk analysis of coronary artery disease in Pakistani subjects using a genetic risk score of 21 variants, Atherosclerosis, 2017, vol. 258, pp. 1—7. https://doi.org/10.1016/j.atherosclerosis.2017.01.024

Saber-Ayad, M., Manzoor, S., El Serafi, A., et al., The FTO rs9939609 “A” allele is associated with impaired fasting glucose and insulin resistance in Emirati population, Gene, 2019, vol. 681, pp. 93—98. https://doi.org/10.1016/j.gene.2018.09.053

Mitropoulos, K., Merkouri Papadima, E., Xiromerisiou, G., et al., Genomic variants in the FTO gene are associated with sporadic amyotrophic lateral sclerosis in Greek patients, Hum. Genomics, 2017, vol. 11, no. 1, p. 30. https://doi.org/10.1186/s40246-017-0126-2

Kilpeläinen, T.O., Zillikens, M.C., Stančákova, A., et al., Genetic variation near IRS1 associates with reduced adiposity and an impaired metabolic profile, Nat. Genet., 2011, vol. 43, no. 8, pp. 753—760. https://doi.org/10.1038/ng.866

Ningombam, S.S., Chhungi, V., Newmei, M.K., et al., Differential distribution and association of FTO rs9939609 gene polymorphism with obesity: a cross-sectional study among two tribal populations of India with East-Asian ancestry, Gene, 2018, vol. 647, pp. 198—204. https://doi.org/10.1016/j.gene.2018.01.009

Saldaña-Alvarez, Y., Salas-Martínez, M.G., García-Ortiz, H., et al., Gender-dependent association of FTO polymorphisms with body mass index in Mexicans, PLoS One, 2016, vol. 11, no. 1. e0145984. https://doi.org/10.1371/journal.pone.0145984

Oyeyemi, B.F., Ologunde, C.A., Olaoye, A.B., and Alamukii, N.A., FTO gene associates and interacts with obesity risk, physical activity, energy intake, and time spent sitting: pilot study in a Nigerian population, J. Obes., 2017, article 3245270. https://doi.org/10.1155/2017/3245270

Rask-Andersen, M., Karlsson, T., Ek, W.E., and Johansson, Å., Gene-environment interaction study for BMI reveals interactions between genetic factors and physical activity, alcohol consumption and socioeconomic status, PLoS Genet., 2017, vol. 13, no. 9. e1006977. https://doi.org/10.1371/journal.pgen.1006977

Abadi, A., Alyass, A., Robiou du Pont, S., et al., Penetrance of polygenic obesity susceptibility loci across the body mass index distribution, Am. J. Hum. Genet., 2017, vol. 101, no. 6, pp. 925—938. https://doi.org/10.1016/j.ajhg.2017.10.007

Sun, X., Luquet, S., and Small, D.M., DRD2: bridging the genome and ingestive behavior, Trends Cogn. Sci., 2017, vol. 21, no. 5, pp. 372—384. https://doi.org/10.1016/j.tics.2017.03.004

Nagpal, S., Gibson, G., and Marigorta, U.M., Pervasive modulation of obesity risk by the environment and genomic background, Genes (Basel), 2018, vol. 9, no. 8. pii: E411. https://doi.org/10.3390/genes9080411

Kalantari, N., Keshavarz Mohammadi, N., Izadi, P., et al., A haplotype of three SNPs in FTO had a strong association with body composition and BMI in Iranian male adolescents, PLoS One, 2018, vol. 13, no. 4. e0195589. https://doi.org/10.1371/journal.pone.0195589

Wang, X., Huang, N., Yang, M., et al., FTO is required for myogenesis by positively regulating mTOR-PGC-1α pathway-mediated mitochondria biogenesis, Cell Death Dis., 2017, vol. 8, no. 3. e2702. https://doi.org/10.1038/cddis.2017.122

Church, C., Moir, L., McMurray, F., et al., Overexpression of Fto leads to increased food intake and results in obesity, Nat. Genet., 2010, vol. 42, no. 12, pp. 1086—1092. https://doi.org/10.1038/ng.713

Gerken, T., Girard, C.A., Tung, Y.C., et al., The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase, Science, 2007, vol. 318, no. 5855, pp. 1469—1472. https://doi.org/10.1126/science.1151710

den Hoed, M., Westerterp-Plantenga, M.S., Bouwman, F.G., et al., Postprandial responses in hunger and satiety are associated with the rs9939609 single nucleotide polymorphism in FTO,Am. J. Clin. Nutr., 2009, vol. 90, no. 5, pp. 1426—1432. https://doi.org/10.3945/ajcn.2009.28053

Magno, F.C.C.M., Guaraná, H.C., Fonseca, A.C.P., et al., Influence of FTO rs9939609 polymorphism on appetite, ghrelin, leptin, IL6, TNFα levels, and food intake of women with morbid obesity, Diabetes Metab. Syndr. Obes., 2018, vol. 11, pp. 199—207. https://doi.org/10.2147/DMSO.S154978

Skuladottir, G.V., Oskarsdottir, H., Pisanu, C., et al., Plasma stearoyl-CoA desaturase activity indices and bile acid concentrations after a low-fat meal: association with a genetic variant in the FTO gene, Diabetes Metab. Syndr. Obes., 2018, vol. 11, pp. 611—618. https://doi.org/10.2147/DMSO.S175730

Zhao, X., Yang, Y., Sun, B.F., et al., FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis, Cell Res., 2014, vol. 24, no. 12, pp. 1403—1419. https://doi.org/10.1038/cr.2014.151

Wang, X., Zhu, L., Chen, J., and Wang, Y., mRNA m6A methylation downregulates adipogenesis in porcine adipocytes, Biochem. Biophys. Res. Commun., 2015, vol. 459, no. 2, pp. 201—207. https://doi.org/10.1016/j.bbrc.2015.02.048

Martin Carli, J.F., LeDuc, C.A., Zhang, Y., et al., FTO mediates cell-autonomous effects on adipogenesis and adipocyte lipid content by regulating gene expression via 6mA DNA modifications, J. Lipid Res., 2018, vol. 59, no. 8, pp. 1446—1460. https://doi.org/10.1194/jlr.M085555

Merkestein, M., McTaggart, J.S., Lee, S., et al., Changes in gene expression associated with FTO overexpression in mice, PLoS One, 2014, vol. 9, no. 5. e97162. https://doi.org/10.1371/journal.pone.0097162

Zhuang, C., Zhuang, C., Luo, X., et al., N6-methyladenosine demethylase FTO suppresses clear cell renal cell carcinoma through a novel FTO-PGC-1α signalling axis, J. Cell Mol. Med., 2019, vol. 23, no. 3, pp. 2163—2173. https://doi.org/10.1111/jcmm.14128

Xu, D., Shao, W., Jiang, Y., et al., FTO expression is associated with the occurrence of gastric cancer and prognosis, Oncol. Rep., 2017, vol. 38, no. 4, pp. 2285—2292. https://doi.org/10.3892/or.2017.5904

Liu, Y., Wang, R., Zhang, L., et al., The lipid metabolism gene FTO influences breast cancer cell energy metabolism via the PI3K/AKT signaling pathway, Oncol. Lett., 2017, vol. 13, no. 6, pp. 4685—4690. https://doi.org/10.3892/ol.2017.6038

Liu, J., Ren, D., Du, Z., et al., m6A demethylase FTO facilitates tumor progression in lung squamous cell carcinoma by regulating MZF1 expression, Biochem. Biophys. Res. Commun., 2018, vol. 502, no. 4, pp. 456—464. https://doi.org/10.1016/j.bbrc.2018.05.175

Cui, Q., Shi, H., Ye, P., et al., m6A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells, Cell Rep., 2017, vol. 18, no. 11, pp. 2622—2634. https://doi.org/10.1016/j.celrep.2017.02.059

Huđek, A., Škara, L., Smolkovič, B., et al., Higher prevalence of FTO gene risk genotypes AA rs9939609, CC rs1421085, and GG rs17817449 and saliva containing Staphylococcus aureus in obese women in Croatia, Nutr. Res., 2017, vol. 50, pp. 94—103. https://doi.org/10.1016/j.nutres.2017.12.005

IntAct Molecular Interaction. https://www.ebi.ac.uk/ intact/. Accessed October, 2019.

Orchard, S., Ammari, M., Aranda, B., et al., The MIntAct project—IntAct as a common curation platform for 11 molecular interaction databases, Nucleic Acids Res., 2014, vol. 42, pp. D358—D363. https://doi.org/10.1093/nar/gkt1115

Song, T., Yang, Y., Wei, H., et al., Zfp217 mediates m6A mRNA methylation to orchestrate transcriptional and post-transcriptional regulation to promote adipogenic differentiation, Nucleic Acids Res., 2019. pii: gkz312. https://doi.org/10.1093/nar/gkz312

Wu, W., Feng, J., Jiang, D., et al., AMPK regulates lipid accumulation in skeletal muscle cells through FTO-dependent demethylation of N6-methyladenosine, Sci. Rep., 2017, vol. 7, article 41606. https://doi.org/10.1038/srep41606

Tan, N.N., Tang, H.L., Lin, G.W., et al., Epigenetic downregulation of Scn3a expression by valproate: a possible role in its anticonvulsant activity, Mol. Neurobiol., 2017, vol. 54, no. 4, pp. 2831—2842. https://doi.org/10.1007/s12035-016-9871-9

Heng, J., Tian, M., Zhang, W., et al., Maternal heat stress regulates the early fat deposition partly through modification of m6A RNA methylation in neonatal piglets, Cell Stress Chaperones, 2019, vol. 24, no. 3, pp. 635—645. https://doi.org/10.1007/s12192-019-01002-1

Zhang, Y., Guo, F., and Zhao, R., Hepatic expression of FTO and fatty acid metabolic genes changes in response to lipopolysaccharide with alterations in m6A modification of relevant mRNAs in the chicken, Br. Poult. Sci., 2016, vol. 57, no. 5, pp. 628—635. https://doi.org/10.1080/00071668.2016.1201199

Lu, N., Li, X., Yu, J., et al., Curcumin attenuates lipopolysaccharide-induced hepatic lipid metabolism disorder by modification of m6A RNA methylation in piglets, Lipids, 2018, vol. 53, no. 1, pp. 53—63. https://doi.org/10.1002/lipd.12023

Vujovic, P., Stamenkovic, S., Jasnic, N., et al., Fasting induced cytoplasmic Fto expression in some neurons of rat hypothalamus, PLoS One, 2013, vol. 8, no. 5. e63694. https://doi.org/10.1371/journal.pone.0063694

Nowacka-Woszuk, J., Pruszynska-Oszmalek, E., Szydlowski, M., and Szczerbal, I., Nutrition modulates Fto and Irx3 gene transcript levels, but does not alter their DNA methylation profiles in rat white adipose tissues, Gene, 2017, vol. 610, pp. 44—48. https://doi.org/10.1016/j.gene.2017.02.002

Chen, J., Zhou, X., Wu, W., et al., FTO-dependent function of N6-methyladenosine is involved in the hepatoprotective effects of betaine on adolescent mice, J. Physiol. Biochem., 2015, vol. 71, no. 3, pp. 405—413. https://doi.org/10.1007/s13105-015-0420-1

Li, X., Yang, J., Zhu, Y., et al., Mouse maternal high-fat intake dynamically programmed mRNA m6A modifications in adipose and skeletal muscle tissues in offspring, Int. J. Mol. Sci., 2016, vol. 17, no. 8. pii: E1336. https://doi.org/10.3390/ijms17081336

Melnik, B.C., Milk: an epigenetic amplifier of FTO-mediated transcription? Implications for Western diseases, J. Transl. Med., 2015, vol. 13, no. 385. https://doi.org/10.1186/s12967-015-0746-z

Melnik, B.C. and Schmitz, G., Milk’s role as an epigenetic regulator in health and disease, Diseases, 2017, vol. 5, no. 1. pii: E12. https://doi.org/10.3390/diseases5010012

Mizuno, T.M., Lew, P.S., Luo, Y., and Leckstrom, A., Negative regulation of hepatic fat mass and obesity associated (Fto) gene expression by insulin, Life Sci., 2017, vol. 170, pp. 50—55. https://doi.org/10.1016/j.lfs.2016.11.027

Lai, A.G., Forde, D., Chang, W.H., et al., Glucose and glutamine availability regulate HepG2 transcriptional responses to low oxygen, Wellcome Open Res., 2018, vol. 3, no. 126. https://doi.org/10.12688/wellcomeopenres.14839.1

Wu, R., Yao, Y., Jiang, Q., et al., Epigallocatechin gallate targets FTO and inhibits adipogenesis in an mRNA m6A-YTHDF2-dependent manner, Int. J. Obes. (London), 2018, vol. 42, no. 7, pp. 1378—1388. https://doi.org/10.1038/s41366-018-0082-5

Yadav, D.K., Shrestha, S., Lillycrop, K.A., et al., Vitamin B12 supplementation influences methylation of genes associated with type 2 diabetes and its intermediate traits, Epigenomics, 2018, vol. 10, no. 1, pp. 71—90. https://doi.org/10.2217/epi-2017-0102

Ortega-Azorín, C., Sorlí, J.V., Asensio, E.M., et al., Associations of the FTO rs9939609 and the MC4R rs17782313 polymorphisms with type 2 diabetes are modulated by diet, being higher when adherence to the Mediterranean diet pattern is low, Cardiovasc. Diabetol., 2012, vol. 1, no. 137. https://doi.org/10.1186/1475-2840-11-137

Hosseini-Esfahani, F., Koochakpoor, G., Daneshpour, M.S., et al., Mediterranean dietary pattern adherence modify the association between FTO genetic variations and obesity phenotypes, Nutrients, 2017, vol. 9, no. 10. pii: E1064. https://doi.org/10.3390/nu9101064

Vimaleswaran, K.S., Bodhini, D., Lakshmipriya, N., et al., Interaction between FTO gene variants and lifestyle factors on metabolic traits in an Asian Indian population, Nutr. Metab. (London), 2016, vol. 13, no. 39. https://doi.org/10.1186/s12986-016-0098-6

Lourenco, B.H., Qi, L., Willett, W.C., and Cardoso, M.A., ACTION Study Team, FTO genotype, vitamin D status, and weight gain during childhood, Diabetes, 2014, vol. 63, pp. 808—814. https://doi.org/10.2337/db13-1290

Bandstein, M., Schultes, B., Ernst, B., et al., The role of FTO and vitamin D for the weight loss effect of Roux-en-Y gastric bypass surgery in obese patients, Obes. Surg., 2015, vol. 25, no. 11, pp. 2071—2077. https://doi.org/10.1007/s11695-015-1644-4

Bjørnland, T., Langaas, M., Grill, V., and Mostad, I.L., Assessing gene-environment interaction effects of FTO, MC4R and lifestyle factors on obesity using an extreme phenotype sampling design: results from the HUNT study, PLoS One, 2017, vol. 12, no. 4. e0175071. https://doi.org/10.1371/journal.pone.0175071

Shinozaki, K., Okuda, M., Okayama, N., and Kunitsugu, I., Physical activity modifies the FTO effect on body mass index change in Japanese adolescents, Pediatr. Int., 2018, vol. 60, no. 7, pp. 656—661. https://doi.org/10.1111/ped.13578

Graff, M., Scott, R.A., Justice, A.E., et al., Genome-wide physical activity interactions in adiposity—a meta-analysis of 200 452 adults, PLoS Genet., 2017, vol. 13, no. 4. e1006528. https://doi.org/10.1371/journal.pgen.1006528

Reddon, H., Gerstein, H.C., Engert, J.C., et al., Physical activity and genetic predisposition to obesity in a multiethnic longitudinal study, Sci. Rep., 2016, vol. 6, article 18672. https://doi.org/10.1038/srep18672

Kaspi, A., Khurana, I., Ziemann, M., et al., Diet during pregnancy is implicated in the regulation of hypothalamic RNA methylation and risk of obesity in offspring, Mol. Nutr. Food Res., 2018. e1800134. https://doi.org/10.1002/mnfr.201800134

Doaei, S., Kalantari, N., Mohammadi, N.K., et al., Macronutrients and the FTO gene expression in hypothalamus; a systematic review of experimental studies, Indian Heart J., 2017, vol. 69, no. 2, pp. 277—281. https://doi.org/10.1016/j.ihj.2017.01.014

Przeliorz-Pyszczek, A. and Regulska-Ilow, B., The role of macronutrient intake in reducing the risk of obesity and overweight among carriers of different polymorphisms of FTO gene: a review, Rocz. Panstw. Zakl. Hig., 2017, vol. 68, no. 1, pp. 5—13.

Khan, S.M., El Hajj Chehadeh, S., Abdulrahman, M., et al., Establishing a genetic link between FTO and VDR gene polymorphisms and obesity in the Emirati population, BMC Med. Genet., 2018, vol. 19, no. 1, p. 11. https://doi.org/10.1186/s12881-018-0522-z

Rivera, M., Locke, A.E., Corre, T., et al., Interaction between the FTO gene, body mass index and depression: meta-analysis of 13701 individuals, Br. J. Psychiatry, 2017, vol. 211, no. 2, pp. 70—76. https://doi.org/10.1192/bjp.bp.116.183475

Schröder, C., Czerwensky, F., Leucht, S., and Steimer, W., Fat mass and obesity-related gene variants rs9939609 and rs7185735 are associated with second-generation antipsychotic-induced weight gain, Pharmacopsychiatry, 2019, vol. 52, no. 1, pp. 16—23. https://doi.org/10.1055/s-0043-125392

Armamento-Villareal, R., Wingkun, N., Aguirre, L.E., et al., The FTO gene is associated with a paradoxically favorable cardiometabolic risk profile in frail, obese older adults, Pharmacogenet. Genomics, 2016, vol. 26, no. 4, pp. 154—160. https://doi.org/10.1097/FPC.0000000000000201

Perfilyev, A., Dahlman, I., Gillberg, L., et al., Impact of polyunsaturated and saturated fat overfeeding on the DNA-methylation pattern in human adipose tissue: a randomized controlled trial, Am. J. Clin. Nutr., 2017, vol. 105, no. 4, pp. 991—1000. https://doi.org/10.3945/ajcn.116.143164

Tehranifar, P., Wu, H.C., McDonald, J.A., et al., Maternal cigarette smoking during pregnancy and offspring DNA methylation in midlife, Epigenetics, 2017, vol. 13, no. 2, pp. 129—134. https://doi.org/10.1080/15592294.2017.1325065

Richmond, R.C., Suderman, M., Langdon, R., et al., DNA methylation as a marker for prenatal smoke exposure in adults, Int. J. Epidemiol., 2018, vol. 47, no. 4, pp. 1120—1130. https://doi.org/10.1093/ije/dyy091

Liu, Z.W., Zhang, J.T., Cai, Q.Y., et al., Birth weight is associated with placental fat mass- and obesity-associated gene expression and promoter methylation in a Chinese population, J. Matern. Fetal. Neonatal. Med., 2016, vol. 29, no. 1, pp. 106—111. https://doi.org/10.3109/14767058.2014.987749

Mansego, M.L., Milagro, F.I., Zulet, M.A., and Martinez, J.A., SH2B1 CpG-SNP is associated with body weight reduction in obese subjects following a dietary restriction program, Ann. Nutr. Metab., 2015, vol. 66, no. 1, pp. 1—9. https://doi.org/10.1159/000368425

Rönn, T., Volkov, P., Gillberg, L., et al., Impact of age, BMI and HbA1c levels on the genome-wide DNA methylation and mRNA expression patterns in human adipose tissue and identification of epigenetic biomarkers in blood, Hum. Mol. Genet., 2015, vol. 24, no. 13, pp. 3792—3813. https://doi.org/10.1093/hmg/ddv124

Toperoff, G., Aran, D., Kark, J.D., et al., Genome-wide survey reveals predisposing diabetes type 2-related DNA methylation variations in human peripheral blood, Hum. Mol. Genet., 2012, vol. 21, no. 2, pp. 371—383. https://doi.org/10.1093/hmg/ddr472

Toperoff, G., Kark, J.D., Aran, D., et al., Premature aging of leukocyte DNA methylation is associated with type 2 diabetes prevalence, Clin. Epigenet., 2015, vol. 7, no. 35. https://doi.org/10.1186/s13148-015-0069-1

van Otterdijk, S.D., Binder, A.M., Szarc Vel Szic, K., et al., DNA methylation of candidate genes in peripheral blood from patients with type 2 diabetes or the metabolic syndrome, PLoS One, 2017, vol. 12, no. 7. e0180955. https://doi.org/10.1371/journal.pone.0180955

Willmer, T., Johnson, R., Louw, J., and Pheiffer, C., Blood-based DNA methylation biomarkers for type 2 diabetes: potential for clinical applications, Front. Endocrinol. (Lausanne), 2018, vol. 9, article 744. https://doi.org/10.3389/fendo.2018.00744

Dayeh, T., Volkov, P., Salö, S., et al., Genome-wide DNA methylation analysis of human pancreatic islets from type 2 diabetic and non-diabetic donors identifies candidate genes that influence insulin secretion, PLoS Genet., 2014, vol. 10, no. 3. e1004160. https://doi.org/10.1371/journal.pgen.1004160

Elliott, H.R., Walia, G.K., Duggirala, A., et al., Migration and DNA methylation: a comparison of methylation patterns in type 2 diabetes susceptibility genes between Indians and Europeans, J. Diabetes Res. Clin. Metab., 2013, vol. 2, no. 6. https://doi.org/10.7243/2050-0866-2-6

Bell, C.G., Finer, S., Lindgren, C.M., et al., Integrated genetic and epigenetic analysis identifies haplotype-specific methylation in the FTO type 2 diabetes and obesity susceptibility locus, PLoS One, 2010, vol. 5, no. 11. e14040. https://doi.org/10.1371/journal.pone.0014040

Zhou, Y., Simmons, D., Lai, D., et al., rs9939609 FTO genotype associations with FTO methylation level influences body mass and telomere length in an Australian rural population, Int. J. Obes. (London), 2017, vol. 41, no. 9, pp. 1427—1433. https://doi.org/10.1038/ijo.2017.127

Gemma, C., Sookoian, S., Alvariñas, J., et al., Maternal pregestational BMI is associated with methylation of the PPARGC1A promoter in newborns, Obesity (Silver Spring), 2009, vol. 17, no. 5, pp. 1032—1039. https://doi.org/10.1038/oby.2008.605

Almén, M.S., Jacobsson, J.A., Moschonis, G., et al., Genome wide analysis reveals association of a FTO gene variant with epigenetic changes, Genomics, 2012, vol. 99, no. 3, pp. 132—137. https://doi.org/10.1016/j.ygeno.2011.12.007