The Extended Rayleigh–Ritz Method for Higher Order Approximate Solutions of Nonlinear Vibration Equations
Tóm tắt
Từ khóa
Tài liệu tham khảo
Oliveri, V., Milazzo, A.: A Rayleigh-Ritz approach for postbuckling analysis of variable angle tow composite stiffened panels. Comput. Struct. 196, 263–276 (2018)
Ghafari, E., Rezaeepazhand, J.: Two-dimensional cross-sectional analysis of composite beams using Rayleigh-Ritz-based dimensional reduction method. Compos. Struct. 184, 872–882 (2018)
Ganesh, R., Ganguli, R.: Stiff string approximations in Rayleigh-Ritz method for rotating beams. Appl. Math. Comput. 219(17), 9282–9295 (2013)
Chu, E.K.W., Fan, H.Y., Jia, Z.X., Li, T.X., Lin, W.W.: The Rayleigh-Ritz method, refinement and Arnoldi process for periodic matrix pairs. J. Comput. Appl. Math. 235(8), 2626–2639 (2011)
Mokhtari, M., Permoon, M.R., Haddadpour, H.: Dynamic analysis of isotropic sandwich cylindrical shell with fractional viscoelastic core using Rayleigh-Ritz method. Compos. Struct. 186, 165–174 (2017)
Hussien, H.S.: A spectral Rayleigh-Ritz scheme for nonlinear partial differential systems of first order. J. Egypt. Math. Soc. 24(3), 373–378 (2016)
Monterrubio, L.E., Ilanko, S.: Proof of convergence for a set of admissible functions for the Rayleigh-Ritz analysis of beams and plates and shells of rectangular planform. Comput. Struct. 147, 236–243 (2015)
Li, F.M., Kishimoto, K., Huang, W.H.: The calculations of natural frequencies and forced vibration responses of conical shell using the Rayleigh-Ritz method. Mech. Res. Commun. 36(5), 595–602 (2009)
Lee, H.W., Kwak, M.K.: Free vibration analysis of a circular cylindrical shell using the Rayleigh-Ritz method and comparison of different shell theories. J. Sound Vib. 353, 344–377 (2015)
Pradhan, K.K., Chakraverty, S.: Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh-Ritz method. Compos. Part B Eng. 51, 175–184 (2013)
Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley, New York (2011)
Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)
Hu, H.Y.: Applied Nonlinear Mechanics. Aviation Industry Press, Beijing (2000). (in Chinese)
Chen, S.H.: Quantitative Analytical Methods of Strong Nonlinear Vibrations. Science Press, Beijing (2009). (in Chinese)
Liu, Y.Z., Chen, L.Q.: Nonlinear Vibrations. Higher Education Press, Beijing (2001). (in Chinese)
Liao, S.J.: Beyond Perturbation: Introduction to the Homotopy Analysis Method. Chapman and Hall/CRC, Boca Raton (2003)
Bao, S.Y., Cao, J.R., Wang, S.D.: Vibration analysis of nanorods by the Rayleigh-Ritz method and truncated Fourier series. Results Phys. 12, 327–334 (2018)
Grabec, T., Sedlák, P., Seiner, H.: Application of the Ritz-Rayleigh method for Lamb waves in extremely anisotropic media. Wave Motion 96, 102567 (2020)
Wang, J.: The extended Rayleigh-Ritz method for an analysis of nonlinear vibrations. Mech. Adv. Mater. Struct. 29(22), 3281–3284 (2021)
Wang, J., Wu, R.X.: The extended Galerkin method for approximate solutions of nonlinear vibration equations. Appl. Sci. 12(6), 2979 (2022)
Shi, B.Y., Yang, J., Wang, J.: Forced vibration analysis of multi-degree-of-freedom nonlinear systems with the extended Galerkin method. Mech. Adv. Mater. Struct. (2022). https://doi.org/10.1080/15376494.2021.2023922. (in press)
Azzara, R., Carrera, E., Pagani, A.: Nonlinear and linearized vibration analysis of plates and shells subjected to compressive loading. Int. J. Nonlinear Mech. 141, 103936 (2022)
Jing, H.M., Gong, X.L., Wang, J., Wu, R.X., Huang, B.: An analysis of nonlinear beam vibrations with the extended Rayleigh-Ritz method. J. Appl. Comput. Mech. 8(4), 1299–1306 (2022)
He, J.H.: Variational approach for nonlinear oscillators. Chaos Solitons Fract. 34(5), 1430–1439 (2007)
Chowdhury, M.S.H., Hosen, M.A., Ahmad, K., Ali, M.Y., Ismail, A.F.: High-order approximate solutions of strongly nonlinear cubic-quantic Duffing oscillator based on the harmonic balance method. Results Phys. 7, 3962–3967 (2017)
Wang, L.J., Zhang, H.Z., Hu, H., Zhu, M.Q.: An improved KBM method for solving nonlinear vibration equations. J. Vib. Shock 37(3), 165–170 (2018). (in Chinese)
Amore, P., Aranda, A.: Improved Lindstedt-Poincaré method for the solution of nonlinear problem. J. Sound Vib. 283(3), 1115–1136 (2005)
Pirbodaghi, T., Hoseini, S.H., Ahmadiana, M.T., Farrahi, G.H.: Duffing equations with cubic and quantic nonlinearities. Comput. Math. Appl. 57(3), 500–506 (2009)
Yuan, P.X., Li, Y.Q.: Approximate solutions of primary resonance for forced Duffing equation by means of the homotopy analysis method. Chin. J. Mech. Eng. 24(3), 501–506 (2011)
Sah, S.M., Fiedler, B., Shayak, B., Rand, R.H.: Unbounded sequences of stable limit cycles in the delayed Duffing equation: an exact analysis. Nonlinear Dyn. 103, 503–515 (2021)
Mehri, B., Ghorashi, M.: Periodically forced Duffing’s equation. J. Sound Vib. 169(3), 289–295 (1994)