The Explanatory Role of Machine Learning in Molecular Biology

Annalen der Philosophie - Trang 1-21 - 2024
Fridolin Gross1
1CNRS UMR5164 ImmunoConcEpT, Université de Bordeaux, Bordeaux Cedex, France

Tóm tắt

The philosophical debate around the impact of machine learning in science is often framed in terms of a choice between AI and classical methods as mutually exclusive alternatives involving difficult epistemological trade-offs. A common worry regarding machine learning methods specifically is that they lead to opaque models that make predictions but do not lead to explanation or understanding. Focusing on the field of molecular biology, I argue that in practice machine learning is often used with explanatory aims. More specifically, I argue that machine learning can be tightly integrated with other, more traditional, research methods and in a clear sense can contribute to insight into the causal processes underlying phenomena of interest to biologists. One could even say that machine learning is not the end of theory in important areas of biology, as has been argued, but rather a new beginning. I support these claims with a detailed discussion of a case study involving gene regulation by microRNAs.

Tài liệu tham khảo

Alipanahi, B., Delong, A., Weirauch, M. T., & Frey, B. J. (2015). Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nature Biotechnology, 33(8), 831–838. https://doi.org/10.1038/nbt.3300 AlQuraishi, M. (2020). AlphaFold2 @ CASP14: “It feels like one’s child has left home.”. Blog entry at https://moalquraishi.wordpress.com/2020/12/08/alphafold2-casp14-it-feels-like-ones-child-has-left-home/, accessed on 2022-05-02. Alvarado, R., & Humphreys, P. (2017). Big data, thick mediation, and representational opacity. New Literary History, 48(4), 729–749. https://doi.org/10.1353/nlh.2017.0037 Anderson, C. (2008). The end of theory: The data deluge makes the scientific method obsolete. WIRED magazine, https://www.wired.com/2008/06/pb-theory/, accessed on 2021-05-02. Andrews, M. (2023). The immortal science of ML: Machine learning & the theory-free ideal. Preprint at https://rgdoi.net/10.13140/RG.2.2.28311.75685. Baker, R. E., Peña, J. M., Jayamohan, J., & Jérusalem, A. (2018). Mechanistic models versus machine learning, a fight worth fighting for the biological community? Biology Letters, 14(5), 20170660. https://doi.org/10.1098/rsbl.2017.0660 Bartel, D. P. (2018). Metazoan MicroRNAs. Cell, 173(1), 20–51. https://doi.org/10.1016/j.cell.2018.03.006 Bechtel, W., & Abrahamsen, A. (2010). Dynamic mechanistic explanation: Computational modeling of circadian rhythms as an exemplar for cognitive science. Studies in History and Philosophy of Science Part A, 41(3), 321–333. https://doi.org/10.1016/j.shpsa.2010.07.003 Beisbart, C., & Räz, T. (2022). Philosophy of science at sea: Clarifying the interpretability of machine learning. Philosophy Compass, 17(6), e12830. https://doi.org/10.1111/phc3.12830 Boge, F. J. (2022). Two dimensions of opacity and the deep learning predicament. Minds and Machines, 32(1), 43–75. https://doi.org/10.1007/s11023-021-09569-4 Boge, F. J., Grünke, P., & Hillerbrand, R. (2022). Minds and machines special issue: Machine learning: Prediction without explanation? Minds and Machines, 32(1), 1–9. https://doi.org/10.1007/s11023-022-09597-8 Boge, F. J., & Poznic, M. (2021). Machine learning and the future of scientific explanation. Journal for General Philosophy of Science, 52(1), 171–176. https://doi.org/10.1007/s10838-020-09537-z Boon, M. (2020). How Scientists Are Brought Back into Science-The Error of Empiricism, In A critical reflection on automated science: Will Science Remain Human?, eds. Bertolaso, M. and F. Sterpetti, pp. 43–65. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-25001-0_4. Burian, R. M. (2007). On MicroRNA and the need for exploratory experimentation in post-genomic molecular biology. History and Philosophy of the Life Sciences, 29(3), 285–311. Burrell, J. (2016). How the machine ‘thinks’: Understanding opacity in machine learning algorithms. Big Data & Society, 3(1), 2053951715622512. https://doi.org/10.1177/2053951715622512 Callaway, E. (2020). ‘It will change everything’: DeepMind’s AI makes gigantic leap in solving protein structures. Nature, 588(7837), 203–204. https://doi.org/10.1038/d41586-020-03348-4 Canali, S. (2016). Big data, epistemology and causality: Knowledge in and knowledge out in EXPOsOMICS. Big Data & Society, 3(2), 2053951716669530. https://doi.org/10.1177/2053951716669530 Cao, R., & Yamins, D. (2021). Explanatory models in neuroscience: Part 1—taking mechanistic abstraction seriously. Preprint at https://arxiv.org/abs/2104.01490. Chirimuuta, M. (2021). Prediction versus understanding in computationally enhanced neuroscience. Synthese, 199(1–2), 767–790. https://doi.org/10.1007/s11229-020-02713-0 Coveney, P. V., Dougherty, E. R., & Highfield, R. R. (2016). Big data need big theory too. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2080), 20160153. https://doi.org/10.1098/rsta.2016.0153 Craver, C. F. (2008). Physical law and mechanistic explanation in the Hodgkin and Huxley model of the action potential. Philosophy of Science, 75(5), 1022–1033. https://doi.org/10.1086/594543 Craver, C. F., & Povich, M. (2017). The directionality of distinctively mathematical explanations. Studies in History and Philosophy of Science Part A, 63, 31–38. https://doi.org/10.1016/j.shpsa.2017.04.005 Creel, K. A. (2020). Transparency in complex computational systems. Philosophy of Science, 87(4), 568–589. https://doi.org/10.1086/709729 Crick, F. (1958). On protein synthesis. Symposia of the Society for Experimental Biology, 12, 138–163. Cuperus, J. T., Groves, B., Kuchina, A., Rosenberg, A. B., Jojic, N., Fields, S., & Seelig, G. (2017). Deep learning of the regulatory grammar of yeast 5’ untranslated regions from 500,000 random sequences. Genome Research, 27(12), 2015–2024. https://doi.org/10.1101/gr.224964.117 De Regt, H. W. (2015). Scientific understanding: Truth or dare? Synthese, 192(12), 3781–3797. https://doi.org/10.1007/s11229-014-0538-7 De Regt, H. W., & Dieks, D. (2005). A contextual approach to scientific understanding. Synthese, 144(1), 137–170. https://doi.org/10.1007/s11229-005-5000-4 Duede, E. (2022). Instruments, agents, and artificial intelligence: Novel epistemic categories of reliability. Synthese, 200(6), 491. https://doi.org/10.1007/s11229-022-03975-6 Duede, E. (2023). Deep learning opacity in scientific discovery. Philosophy of Science, 90(5), 1089–1099. https://doi.org/10.1017/psa.2023.8 Hooker, G., & Hooker, C. (2018). Machine learning and the future of realism. Spontaneous Generations: A Journal for the History and Philosophy of Science, 9(1), 174. https://doi.org/10.4245/sponge.v9i1.27047 Issad, T., & Malaterre, C. (2015). Are dynamic mechanistic explanations still mechanistic? In P. A. Braillard & C. Malaterre (Eds.), Explanation in Biology: An enquiry into the diversity of explanatory patterns in the life sciences (pp. 265–292). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-017-9822-8_12 Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2 Kawamleh, S. (2021). Can machines learn how clouds work? The epistemic implications of machine learning methods in climate science. Philosophy of Science, 88(5), 1008–1020. https://doi.org/10.1086/714877 Knüsel, B., & Baumberger, C. (2020). Understanding climate phenomena with data-driven models. Studies in History and Philosophy of Science Part A, 84, 46–56. https://doi.org/10.1016/j.shpsa.2020.08.003 Krenn, M., Pollice, R., Guo, S. Y., Aldeghi, M., Cervera-Lierta, A., Friederich, P., dos Passos Gomes, G., Häse, F., Jinich, A., Nigam, A., Yao, Z., & Aspuru-Guzik, A. (2022). On scientific understanding with artificial intelligence. Nature Reviews Physics, 4(12), 761–769. https://doi.org/10.1038/s42254-022-00518-3 Lange, M. (2013). What makes a scientific explanation distinctively mathematical? British Journal for the Philosophy of Science, 64(3), 485–511. https://doi.org/10.1093/bjps/axs012 Leonelli, S. (2016). Data-Centric Biology : A Philosophical Study. Chicago: University of Chicago Press. Lipton, P. (2009). Understanding Without Explanation. In H. W. de Regt, S. Leonelli, & K. Eigner (Eds.), Scientific Understanding: Philosophical Perspectives (pp. 43–63). Pittsburgh: University of Pittsburgh Press. López-Rubio, E., & Ratti, E. (2021). Data science and molecular biology: Prediction and mechanistic explanation. Synthese, 198(4), 3131–3156. https://doi.org/10.1007/s11229-019-02271-0 Machamer, P., Darden, L., & Craver, C. F. (2000). Thinking about mechanisms. Philosophy of Science, 67(1), 1–25. McGeary, S. E., Lin, K. S., Shi, C. Y., Pham, T. M., Bisaria, N., Kelley, G. M., & Bartel, D. P. (2019). The biochemical basis of microRNA targeting efficacy. Science, 366(6472), aav1741. https://doi.org/10.1126/science.aav1741 Morange, M., & Cobb, M. (2020). The Black Box of Biology: A History of the Molecular Revolution. Cambridge, MA: Harvard University Press. O’Malley, M. A., & Soyer, O. S. (2012). The roles of integration in molecular systems biology. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 43(1), 58–68. https://doi.org/10.1016/j.shpsc.2011.10.006 Ourmazd, A. (2020). Science in the age of machine learning. Nature Reviews Physics, 2(7), 342–343. https://doi.org/10.1038/s42254-020-0191-7 O’Malley, M. A., Elliott, K. C., & Burian, R. M. (2010). From genetic to genomic regulation: Iterativity in microRNA research. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 41(4), 407–417. https://doi.org/10.1016/j.shpsc.2010.10.011 Pietsch, W. (2015). Aspects of theory-Ladenness in data-intensive science. Philosophy of Science, 82(5), 905–916. https://doi.org/10.1086/683328 Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence, 1(5), 206–215. https://doi.org/10.1038/s42256-019-0048-x Räz, T. (2022a). ML Interpretability: Simple Isn’t Easy. Preprint at https://arxiv.org/abs/2211.13617. Räz, T. (2022b). Understanding deep learning with statistical relevance. Philosophy of Science, 89(1), 20–41. https://doi.org/10.1017/psa.2021.12 Räz, T., & Beisbart, C. (2022). The importance of understanding deep learning. Erkenntnis. https://doi.org/10.1007/s10670-022-00605-y Soutschek, M., Gross, F., Schratt, G., & Germain, P. L. (2022). scanMiR: A biochemically based toolkit for versatile and efficient microRNA target prediction. Bioinformatics, 38(9), 2466–2473. https://doi.org/10.1093/bioinformatics/btac110 Spinney, L. (2022). Are we witnessing the dawn of post-theory science? The Guardian, https://www.theguardian.com/technology/2022/jan/09/are-we-witnessing-the-dawn-of-post-theory-science, accessed on 2023-09-21. Srećković, S., Berber, A., & Filipović, N. (2022). The automated Laplacean Demon: How ML challenges our views on prediction and explanation. Minds and Machines, 32(1), 159–183. https://doi.org/10.1007/s11023-021-09575-6 Stinson, C. (2020). From implausible artificial neurons to idealized cognitive models: Rebooting philosophy of artificial intelligence. Philosophy of Science, 87(4), 590–611. https://doi.org/10.1086/709730 Sullivan, E. (2022). Understanding from machine learning models. The British Journal for the Philosophy of Science, 73(1), 109–133. https://doi.org/10.1093/bjps/axz035 Watson, D. S. (2022). Conceptual challenges for interpretable machine learning. Synthese, 200(2), 65. https://doi.org/10.1007/s11229-022-03485-5 Watson, D. S. (2022). Interpretable machine learning for genomics. Human Genetics, 141(9), 1499–1513. https://doi.org/10.1007/s00439-021-02387-9 Watson, D.S., & Floridi, L. (2021). The explanation game: A formal framework for interpretable machine learning, In Ethics, Governance, and Policies in Artificial Intelligence, ed. Floridi, L., 185–219. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-81907-1_11. Weber, M. (2005). Philosophy of Experimental Biology. Cambridge: Cambridge University Press. Whalen, S., Truty, R. M., & Pollard, K. S. (2016). Enhancer-promoter interactions are encoded by complex genomic signatures on looping chromatin. Nature Genetics, 48(5), 488–496. https://doi.org/10.1038/ng.3539 Zednik, C. (2021). Solving the black box problem: A normative framework for explainable artificial intelligence. Philosophy & Technology, 34(2), 265–288. https://doi.org/10.1007/s13347-019-00382-7 Zednik, C., & Boelsen, H. (2022). Scientific exploration and explainable artificial intelligence. Minds and Machines, 32(1), 219–239. https://doi.org/10.1007/s11023-021-09583-6 Zerilli, J. (2022). Explaining machine learning decisions. Philosophy of Science, 89(1), 1–19. https://doi.org/10.1017/psa.2021.13