The Explanatory Role of Machine Learning in Molecular Biology
Annalen der Philosophie - Trang 1-21 - 2024
Tóm tắt
The philosophical debate around the impact of machine learning in science is often framed in terms of a choice between AI and classical methods as mutually exclusive alternatives involving difficult epistemological trade-offs. A common worry regarding machine learning methods specifically is that they lead to opaque models that make predictions but do not lead to explanation or understanding. Focusing on the field of molecular biology, I argue that in practice machine learning is often used with explanatory aims. More specifically, I argue that machine learning can be tightly integrated with other, more traditional, research methods and in a clear sense can contribute to insight into the causal processes underlying phenomena of interest to biologists. One could even say that machine learning is not the end of theory in important areas of biology, as has been argued, but rather a new beginning. I support these claims with a detailed discussion of a case study involving gene regulation by microRNAs.
Tài liệu tham khảo
Alipanahi, B., Delong, A., Weirauch, M. T., & Frey, B. J. (2015). Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nature Biotechnology, 33(8), 831–838. https://doi.org/10.1038/nbt.3300
AlQuraishi, M. (2020). AlphaFold2 @ CASP14: “It feels like one’s child has left home.”. Blog entry at https://moalquraishi.wordpress.com/2020/12/08/alphafold2-casp14-it-feels-like-ones-child-has-left-home/, accessed on 2022-05-02.
Alvarado, R., & Humphreys, P. (2017). Big data, thick mediation, and representational opacity. New Literary History, 48(4), 729–749. https://doi.org/10.1353/nlh.2017.0037
Anderson, C. (2008). The end of theory: The data deluge makes the scientific method obsolete. WIRED magazine, https://www.wired.com/2008/06/pb-theory/, accessed on 2021-05-02.
Andrews, M. (2023). The immortal science of ML: Machine learning & the theory-free ideal. Preprint at https://rgdoi.net/10.13140/RG.2.2.28311.75685.
Baker, R. E., Peña, J. M., Jayamohan, J., & Jérusalem, A. (2018). Mechanistic models versus machine learning, a fight worth fighting for the biological community? Biology Letters, 14(5), 20170660. https://doi.org/10.1098/rsbl.2017.0660
Bartel, D. P. (2018). Metazoan MicroRNAs. Cell, 173(1), 20–51. https://doi.org/10.1016/j.cell.2018.03.006
Bechtel, W., & Abrahamsen, A. (2010). Dynamic mechanistic explanation: Computational modeling of circadian rhythms as an exemplar for cognitive science. Studies in History and Philosophy of Science Part A, 41(3), 321–333. https://doi.org/10.1016/j.shpsa.2010.07.003
Beisbart, C., & Räz, T. (2022). Philosophy of science at sea: Clarifying the interpretability of machine learning. Philosophy Compass, 17(6), e12830. https://doi.org/10.1111/phc3.12830
Boge, F. J. (2022). Two dimensions of opacity and the deep learning predicament. Minds and Machines, 32(1), 43–75. https://doi.org/10.1007/s11023-021-09569-4
Boge, F. J., Grünke, P., & Hillerbrand, R. (2022). Minds and machines special issue: Machine learning: Prediction without explanation? Minds and Machines, 32(1), 1–9. https://doi.org/10.1007/s11023-022-09597-8
Boge, F. J., & Poznic, M. (2021). Machine learning and the future of scientific explanation. Journal for General Philosophy of Science, 52(1), 171–176. https://doi.org/10.1007/s10838-020-09537-z
Boon, M. (2020). How Scientists Are Brought Back into Science-The Error of Empiricism, In A critical reflection on automated science: Will Science Remain Human?, eds. Bertolaso, M. and F. Sterpetti, pp. 43–65. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-25001-0_4.
Burian, R. M. (2007). On MicroRNA and the need for exploratory experimentation in post-genomic molecular biology. History and Philosophy of the Life Sciences, 29(3), 285–311.
Burrell, J. (2016). How the machine ‘thinks’: Understanding opacity in machine learning algorithms. Big Data & Society, 3(1), 2053951715622512. https://doi.org/10.1177/2053951715622512
Callaway, E. (2020). ‘It will change everything’: DeepMind’s AI makes gigantic leap in solving protein structures. Nature, 588(7837), 203–204. https://doi.org/10.1038/d41586-020-03348-4
Canali, S. (2016). Big data, epistemology and causality: Knowledge in and knowledge out in EXPOsOMICS. Big Data & Society, 3(2), 2053951716669530. https://doi.org/10.1177/2053951716669530
Cao, R., & Yamins, D. (2021). Explanatory models in neuroscience: Part 1—taking mechanistic abstraction seriously. Preprint at https://arxiv.org/abs/2104.01490.
Chirimuuta, M. (2021). Prediction versus understanding in computationally enhanced neuroscience. Synthese, 199(1–2), 767–790. https://doi.org/10.1007/s11229-020-02713-0
Coveney, P. V., Dougherty, E. R., & Highfield, R. R. (2016). Big data need big theory too. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2080), 20160153. https://doi.org/10.1098/rsta.2016.0153
Craver, C. F. (2008). Physical law and mechanistic explanation in the Hodgkin and Huxley model of the action potential. Philosophy of Science, 75(5), 1022–1033. https://doi.org/10.1086/594543
Craver, C. F., & Povich, M. (2017). The directionality of distinctively mathematical explanations. Studies in History and Philosophy of Science Part A, 63, 31–38. https://doi.org/10.1016/j.shpsa.2017.04.005
Creel, K. A. (2020). Transparency in complex computational systems. Philosophy of Science, 87(4), 568–589. https://doi.org/10.1086/709729
Crick, F. (1958). On protein synthesis. Symposia of the Society for Experimental Biology, 12, 138–163.
Cuperus, J. T., Groves, B., Kuchina, A., Rosenberg, A. B., Jojic, N., Fields, S., & Seelig, G. (2017). Deep learning of the regulatory grammar of yeast 5’ untranslated regions from 500,000 random sequences. Genome Research, 27(12), 2015–2024. https://doi.org/10.1101/gr.224964.117
De Regt, H. W. (2015). Scientific understanding: Truth or dare? Synthese, 192(12), 3781–3797. https://doi.org/10.1007/s11229-014-0538-7
De Regt, H. W., & Dieks, D. (2005). A contextual approach to scientific understanding. Synthese, 144(1), 137–170. https://doi.org/10.1007/s11229-005-5000-4
Duede, E. (2022). Instruments, agents, and artificial intelligence: Novel epistemic categories of reliability. Synthese, 200(6), 491. https://doi.org/10.1007/s11229-022-03975-6
Duede, E. (2023). Deep learning opacity in scientific discovery. Philosophy of Science, 90(5), 1089–1099. https://doi.org/10.1017/psa.2023.8
Hooker, G., & Hooker, C. (2018). Machine learning and the future of realism. Spontaneous Generations: A Journal for the History and Philosophy of Science, 9(1), 174. https://doi.org/10.4245/sponge.v9i1.27047
Issad, T., & Malaterre, C. (2015). Are dynamic mechanistic explanations still mechanistic? In P. A. Braillard & C. Malaterre (Eds.), Explanation in Biology: An enquiry into the diversity of explanatory patterns in the life sciences (pp. 265–292). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-017-9822-8_12
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2
Kawamleh, S. (2021). Can machines learn how clouds work? The epistemic implications of machine learning methods in climate science. Philosophy of Science, 88(5), 1008–1020. https://doi.org/10.1086/714877
Knüsel, B., & Baumberger, C. (2020). Understanding climate phenomena with data-driven models. Studies in History and Philosophy of Science Part A, 84, 46–56. https://doi.org/10.1016/j.shpsa.2020.08.003
Krenn, M., Pollice, R., Guo, S. Y., Aldeghi, M., Cervera-Lierta, A., Friederich, P., dos Passos Gomes, G., Häse, F., Jinich, A., Nigam, A., Yao, Z., & Aspuru-Guzik, A. (2022). On scientific understanding with artificial intelligence. Nature Reviews Physics, 4(12), 761–769. https://doi.org/10.1038/s42254-022-00518-3
Lange, M. (2013). What makes a scientific explanation distinctively mathematical? British Journal for the Philosophy of Science, 64(3), 485–511. https://doi.org/10.1093/bjps/axs012
Leonelli, S. (2016). Data-Centric Biology : A Philosophical Study. Chicago: University of Chicago Press.
Lipton, P. (2009). Understanding Without Explanation. In H. W. de Regt, S. Leonelli, & K. Eigner (Eds.), Scientific Understanding: Philosophical Perspectives (pp. 43–63). Pittsburgh: University of Pittsburgh Press.
López-Rubio, E., & Ratti, E. (2021). Data science and molecular biology: Prediction and mechanistic explanation. Synthese, 198(4), 3131–3156. https://doi.org/10.1007/s11229-019-02271-0
Machamer, P., Darden, L., & Craver, C. F. (2000). Thinking about mechanisms. Philosophy of Science, 67(1), 1–25.
McGeary, S. E., Lin, K. S., Shi, C. Y., Pham, T. M., Bisaria, N., Kelley, G. M., & Bartel, D. P. (2019). The biochemical basis of microRNA targeting efficacy. Science, 366(6472), aav1741. https://doi.org/10.1126/science.aav1741
Morange, M., & Cobb, M. (2020). The Black Box of Biology: A History of the Molecular Revolution. Cambridge, MA: Harvard University Press.
O’Malley, M. A., & Soyer, O. S. (2012). The roles of integration in molecular systems biology. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 43(1), 58–68. https://doi.org/10.1016/j.shpsc.2011.10.006
Ourmazd, A. (2020). Science in the age of machine learning. Nature Reviews Physics, 2(7), 342–343. https://doi.org/10.1038/s42254-020-0191-7
O’Malley, M. A., Elliott, K. C., & Burian, R. M. (2010). From genetic to genomic regulation: Iterativity in microRNA research. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 41(4), 407–417. https://doi.org/10.1016/j.shpsc.2010.10.011
Pietsch, W. (2015). Aspects of theory-Ladenness in data-intensive science. Philosophy of Science, 82(5), 905–916. https://doi.org/10.1086/683328
Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence, 1(5), 206–215. https://doi.org/10.1038/s42256-019-0048-x
Räz, T. (2022a). ML Interpretability: Simple Isn’t Easy. Preprint at https://arxiv.org/abs/2211.13617.
Räz, T. (2022b). Understanding deep learning with statistical relevance. Philosophy of Science, 89(1), 20–41. https://doi.org/10.1017/psa.2021.12
Räz, T., & Beisbart, C. (2022). The importance of understanding deep learning. Erkenntnis. https://doi.org/10.1007/s10670-022-00605-y
Soutschek, M., Gross, F., Schratt, G., & Germain, P. L. (2022). scanMiR: A biochemically based toolkit for versatile and efficient microRNA target prediction. Bioinformatics, 38(9), 2466–2473. https://doi.org/10.1093/bioinformatics/btac110
Spinney, L. (2022). Are we witnessing the dawn of post-theory science? The Guardian, https://www.theguardian.com/technology/2022/jan/09/are-we-witnessing-the-dawn-of-post-theory-science, accessed on 2023-09-21.
Srećković, S., Berber, A., & Filipović, N. (2022). The automated Laplacean Demon: How ML challenges our views on prediction and explanation. Minds and Machines, 32(1), 159–183. https://doi.org/10.1007/s11023-021-09575-6
Stinson, C. (2020). From implausible artificial neurons to idealized cognitive models: Rebooting philosophy of artificial intelligence. Philosophy of Science, 87(4), 590–611. https://doi.org/10.1086/709730
Sullivan, E. (2022). Understanding from machine learning models. The British Journal for the Philosophy of Science, 73(1), 109–133. https://doi.org/10.1093/bjps/axz035
Watson, D. S. (2022). Conceptual challenges for interpretable machine learning. Synthese, 200(2), 65. https://doi.org/10.1007/s11229-022-03485-5
Watson, D. S. (2022). Interpretable machine learning for genomics. Human Genetics, 141(9), 1499–1513. https://doi.org/10.1007/s00439-021-02387-9
Watson, D.S., & Floridi, L. (2021). The explanation game: A formal framework for interpretable machine learning, In Ethics, Governance, and Policies in Artificial Intelligence, ed. Floridi, L., 185–219. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-81907-1_11.
Weber, M. (2005). Philosophy of Experimental Biology. Cambridge: Cambridge University Press.
Whalen, S., Truty, R. M., & Pollard, K. S. (2016). Enhancer-promoter interactions are encoded by complex genomic signatures on looping chromatin. Nature Genetics, 48(5), 488–496. https://doi.org/10.1038/ng.3539
Zednik, C. (2021). Solving the black box problem: A normative framework for explainable artificial intelligence. Philosophy & Technology, 34(2), 265–288. https://doi.org/10.1007/s13347-019-00382-7
Zednik, C., & Boelsen, H. (2022). Scientific exploration and explainable artificial intelligence. Minds and Machines, 32(1), 219–239. https://doi.org/10.1007/s11023-021-09583-6
Zerilli, J. (2022). Explaining machine learning decisions. Philosophy of Science, 89(1), 1–19. https://doi.org/10.1017/psa.2021.13