The Energy of Charge‐Transfer States in Electron Donor–Acceptor Blends: Insight into the Energy Losses in Organic Solar Cells

Advanced Functional Materials - Tập 19 Số 12 - Trang 1939-1948 - 2009
Dirk Veldman1, Stefan C. J. Meskers1, René A. J. Janssen1
1Molecular Materials and Nanosystems Eindhoven University of Technology PO Box 513, 5600 MB Eindhoven (The Netherlands)

Tóm tắt

AbstractHere, a general experimental method to determine the energy ECT of intermolecular charge‐transfer (CT) states in electron donor–acceptor (D–A) blends from ground state absorption and electrochemical measurements is proposed. This CT energy is calibrated against the photon energy of maximum CT luminescence from selected D–A blends to correct for a constant Coulombic term. It is shown that ECT correlates linearly with the open‐circuit voltage (Voc) of photovoltaic devices in D–A blends via eVoc = ECT − 0.5 eV. Using the CT energy, it is found that photoinduced electron transfer (PET) from the lowest singlet excited state (S1 with energy Eg) in the blend to the CT state (S1 → CT) occurs when Eg − ECT > 0.1 eV. Additionally, it is shown that subsequent charge recombination from the CT state to the lowest triplet excited state (ET) of D or A (CT → T1) can occur when ECT − ET > 0.1 eV. From these relations, it is concluded that in D–A blends optimized for photovoltaic action: i) the maximum attainable Voc is ultimately set by the optical band gap (eVoc = Eg − 0.6 eV) and ii) the singlet–triplet energy gap should be ΔEST < 0.2 eV to prevent recombination to the triplet state. These favorable conditions have not yet been met in conjugated materials and set the stage for further developments in this area.

Từ khóa


Tài liệu tham khảo

10.1002/1616-3028(200110)11:5<374::AID-ADFM374>3.0.CO;2-W

10.1063/1.1650878

10.1021/cm0620180

10.1021/ja058178e

10.1021/ja061655o

10.1021/ol062666p

10.1063/1.2817930

10.1016/j.tsf.2005.12.034

10.1002/adma.200501717

10.1103/PhysRevB.75.115327

10.1103/PhysRevB.77.085311

10.1103/PhysRevLett.92.247402

10.1007/s10853-005-0576-0

10.1063/1.2171492

10.1002/adfm.200600484

10.1021/ja076568q

10.1021/ja8012598

10.1002/adfm.200800056

10.1103/PhysRevLett.101.037401

10.1063/1.474607

10.1063/1.1924869

10.1002/adfm.200601098

10.1021/jp004474w

10.1021/ma0112164

10.1002/adma.200305618

10.1103/PhysRevB.72.045213

10.1021/cm050148n

10.1063/1.2168046

10.1063/1.2710474

10.1038/nmat1928

10.1063/1.2836266

10.1021/ja806687u

10.1038/nmat1500

10.1063/1.2718488

10.1002/adma.200800456

10.1002/adma.200602496

10.1002/anie.200351647

10.1016/0379-6787(89)90020-3

10.1002/pip.842

10.1063/1.122345

10.1002/pip.583

10.1002/(SICI)1099-159X(199907/08)7:4<311::AID-PIP274>3.0.CO;2-G

10.1063/1.353830

10.1063/1.1573736

10.1016/j.jcrysgro.2006.10.094

10.1063/1.1620683

10.1063/1.2205007

10.1002/anie.199311113

10.1021/jp805949r

10.1103/PhysRevB.67.085202

10.1103/PhysRevB.71.125212

10.1039/B608832E

10.1016/j.cplett.2008.02.021

Cyclic voltammetry can also be performed in the solid state. However we prefer to perform the experiment ino‐DCB solution. This has the advantage that the optical absorption and the oxidation and reduction potentials can be measured and compared in the same solvent for all molecules. Moreover quality of film formation on the electrode or dissolution of the material from the electrode cannot interfere with the experiment. Additionally we note that cyclic voltammetry on films may lead to effects associated with the incorporation of cations and anions in the film during the reduction and oxidation. This can influence the measured potentials but is not directly related to the energy levels that one is interested in.

Using a potential value of 4.6 ± 0.2 eV for NHE versus vacuum (Ref. [37]) and 0.63 eV (Ref. [38]) for Fc/Fc+versus NHE.

10.1007/978-1-4615-3040-4

10.1016/S0020-1693(99)00407-7

10.1039/b101980p

10.1021/ja0388515

10.1016/j.tsf.2005.12.012

10.1063/1.2176863

10.1021/cr050149z

10.1007/s10853-005-0568-0

10.1103/PhysRevB.60.5721

10.1021/cr040084k

10.1016/S0022-3697(71)80164-6

10.1063/1.368227

10.1063/1.1620683

10.1063/1.2205007

10.1002/(SICI)1099-159X(199901/02)7:1<21::AID-PIP244>3.0.CO;2-D

10.1016/S0022-3093(99)00907-2

10.1016/j.tsf.2003.11.014

10.1021/ja052467l

10.1021/ma9904666

10.1021/ma049728g

10.1557/PROC-0974-CC03-09

10.1016/S0379-6779(98)01414-3

Koetse M. M., 2004, Proc. SPIE Int. Soc. Opt. Eng., 5215, 119

10.1021/jo990796o

10.1002/cber.19881210205

M. G. R.Turbiez R. A. J.Janssen M. M.Wienk H. J.Kirner M.Duggli B.Tieke Y.Zhu World Patent ApplicationWO/2008/0006642008.