The Emerging Roles of Silver Nanoparticles to Target Viral Life Cycle and Detect Viral Pathogens

Chemistry - An Asian Journal - Tập 17 Số 5 - 2022
Ujjyani Ghosh1,2, Khondakar Sayef Ahammed1,3, Snehasis Mishra1, Asim Bhaumik4
1Cancer & Inflammatory Disorder Division CSIR-Indian Institute of Chemical Biology Jadavpur, Kolkata 700032 India
2Present address: The University of Utah, Salt Lake City, UT, 84112 USA
3Present address: The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030 USA
4School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700 032, India

Tóm tắt

Abstract

Along the line of recent vaccine advancements, new antiviral therapeutics are compelling to combat viral infection‐related public health crises. Several properties of silver nanoparticles (AgNPs) such as low level of cytotoxicity, ease of tunability of the AgNPs in the ultra‐small nanoscale size and shape through different convenient bottom‐up chemistry approaches, high penetration of the composite with drug formulations into host cells has made AgNPs, a promising candidate for developing antivirals. In this review, we have highlighted the recent advancements in the AgNPs based nano‐formulations to target cellular mechanisms of viral propagation, immune modulation of the host, and the ability to synergistically enhance the activity of existing antiviral drugs. On the other hand, we have discussed the recent advancements on AgNPs based detection of viral pathogens from clinical samples using inherent physicochemical properties. This article will provide an overview of our current knowledge on AgNPs based formulations that has promising potential for developing a counteractive strategy against emerging and existing viruses.

Từ khóa


Tài liệu tham khảo

10.1016/bs.aivir.2016.02.003

K. Moelling Viruses: More Friends Than Foes World Scientific 2016.

N. LePan Visual Capitalist.2020 March 14. Available at: https://www.visualcapitalist.com/history-of-pandemics-deadliest/..

10.1371/journal.ppat.1006215

10.1002/jmv.25682

10.1038/nrmicro3003

10.3390/molecules16108894

10.1007/s00253-013-5473-x

10.3109/1040841X.2013.879849

10.1002/jps.24001

10.1186/1477-3155-3-6

Gaikwad S., 2013, Int. J. Nanomed., 8, 4303

10.1177/135965350801300210

10.2147/IJN.S233766

10.1016/j.jviromet.2011.09.003

10.1166/jbn.2008.012

10.1016/j.jviromet.2016.12.015

10.1007/s00436-015-4556-2

10.1007/s00253-018-9488-1

10.1007/s11671-008-9128-2

10.1166/jbn.2013.1659

10.1186/1477-3155-8-19

10.1016/j.nano.2016.01.021

Dung T. T.N., 2020, Mater. Res. Express, 6, 1250

10.1016/j.fsi.2018.10.007

10.1039/C6RA26472G

10.1016/j.bbrc.2020.09.018

10.1016/j.lwt.2017.01.065

10.1021/acsabm.8b00154

Ahsan T., 2020, Egypt. J. Biochem., 30, 1

10.3389/fmicb.2015.00453

10.1016/j.scitotenv.2017.12.318

10.1128/AEM.03427-13

10.1016/j.watres.2010.11.046

10.1002/asia.201901394

Ryu W. S., 2016, Mol. Virol. Human Pathogenic Viru., 1

10.1016/j.coviro.2019.01.004

10.1126/science.3095925

10.1016/0092-8674(88)90397-2

10.1002/med.20138

Poveda E., 2005, AIDS Rev., 7, 139

10.1111/j.1440-0960.2010.00717.x

10.1084/jem.20051970

10.1186/1477-3155-8-1

10.1186/1477-3155-8-15

Fayaz A. M., 2012, Int. J. Nanomed., 7, 5007

10.1016/bs.aivir.2018.01.003

10.1021/jp4090102

10.1021/bm015640o

10.1016/j.colsurfb.2012.07.036

10.1038/nmat758

10.1016/j.colsurfb.2011.06.024

10.1021/ja910675v

10.1039/c3nr02147e

10.1007/s00204-015-1458-0

10.1021/acs.jpcb.6b01586

10.1039/C8MH01126E

10.1016/j.molliq.2018.11.071

10.3748/wjg.v13.i1.48

10.1016/S0166-3542(02)00076-1

10.1007/s00705-020-04681-9

10.1007/s10876-016-1100-1

10.1016/j.jcv.2005.09.004

10.1038/nri2802

10.1172/JCI39133

10.1021/acsami.7b07343

10.1021/acschembio.0c00381

10.1007/978-94-011-6921-9_2

10.1016/S0952-7915(00)00148-5

10.1111/j.1600-065X.1999.tb01286.x

10.1016/S0966-842X(02)02393-4

10.2217/fvl.13.7

10.1017/S1462399402004696

10.1016/j.vaccine.2008.07.039

10.1021/acschembio.0c00553

10.1016/j.celrep.2015.06.005

10.1186/s12929-019-0567-0

10.1128/jvi.70.12.8624-8629.1996

10.2147/IJN.S53622

10.1021/acsnano.7b06934

10.1128/CMR.13.3.371

10.1007/s40121-020-00387-2

10.3390/v11080732

10.7717/peerj.8446

10.3389/fimmu.2020.00329

10.1172/JCI38879

10.1016/j.nano.2016.11.013

10.1146/annurev-physchem-040214-121637

10.1101/cshperspect.a006924

10.1016/j.jtice.2014.01.008

10.1016/j.jtice.2015.10.029

10.1016/j.jtice.2019.07.019

10.1021/acs.biomac.0c00064

10.1038/nrmicro3098

10.1128/JVI.00724-08

10.1021/nn304868y

10.1021/acs.biomac.5b00101

10.1021/acsbiomaterials.9b01693

10.1002/asia.202001146

10.1016/j.jconrel.2012.04.015

10.2147/IJN.S39074

10.1016/j.biomaterials.2019.119308

10.1021/nl052396o

10.1021/acsnano.5b08025

10.1002/anie.201002969

10.1002/ange.201002969

10.1016/j.biomaterials.2013.03.024

10.1038/mi.2012.9

10.1021/acs.analchem.0c00200

10.2147/IJN.S109098

10.1021/acssensors.6b00379

10.1038/s41598-016-0001-8

10.1021/acsnano.5b05470

10.1016/j.biomaterials.2014.10.068

10.1371/journal.ppat.1005033

10.1128/JVI.00682-18

10.1038/nrd2683

10.1016/j.femsle.2005.09.035

10.1021/bc900215b

10.1128/JVI.01492-10

10.1016/j.tiv.2013.05.010

10.1371/journal.pone.0104113

10.1021/bm0345110

10.3389/fimmu.2018.01115

Singh N., 2020, J. Virol., 94, 4

10.3390/v10100524

10.4049/jimmunol.1701474

10.1016/j.phytochem.2005.01.011

10.1074/jbc.M201074200

10.1093/emboj/cdg279

10.1007/s10495-007-0071-y

10.1021/acsami.6b06613

10.1039/C6RA25010F

10.1039/C6RA18493F

10.1039/C7RA06477B

10.1186/1477-3155-9-1

10.1021/acs.jafc.6b04815

10.1021/acs.jafc.5b00244

10.1208/s12248-012-9432-8

10.1080/08820139.2017.1371908

10.1039/C5NR07918G

10.1021/acsami.5b06876

10.3390/ijerph13040430

10.1021/acsami.7b18915

Pedrosa P., 2015, Nanotechnol. Diagn. Treat. Prophyl. Infect. Diseas., 1

10.1039/C9NA00491B

10.1016/j.jprot.2011.11.007

10.1016/j.saa.2018.05.047

10.1039/C9TB00274J

10.17576/jsm-2017-4612-21

10.1039/c3cc45329d

10.1039/c3cs60077g

10.1021/acs.analchem.5b02210

10.1021/ac101193e

10.1016/j.molliq.2020.114014

10.1016/j.bios.2016.09.086

10.1016/j.aca.2016.01.050

10.5101/nbe.v11i4.p333-339

10.1016/j.bioelechem.2020.107576

10.1039/C6SC00412A

10.1039/c1nr00006c

10.1039/C6RA28737A

10.1016/j.bios.2013.10.045

10.1021/ja0601179

10.1016/j.aca.2019.05.066

10.1021/jf5046415

10.1039/C5LC00055F

10.1021/jp0687908

10.1016/j.talanta.2015.10.081

10.1016/j.saa.2020.118729

10.5740/jaoacint.19-0064

10.1016/j.snb.2019.01.094

10.1002/ange.202008416

10.2217/nnm.10.33

10.1016/j.toxlet.2007.10.004

10.2174/2213476X05666180614121601

S. K. Ghosh Nova Surface-Care Centre Pvt: Maharashtra India 2020.

HeiQ Viroblock NPJ03 antiviral textile technology tested effective against Coronavirus Zurich March 16 2020. See at the URL:https://heiq.com/2020/03/16/heiq-viroblock-antiviraltextile-technology-against-coronavirus(last accessed May 10 2020).

BiosilverLab:https://www.biosilverlab.com/.