The Effects of Temperature and pH on Secondary Structure and Antioxidant Activity of Crocodylus siamensis Hemoglobin
Tóm tắt
Crocodylus siamensis hemoglobin (cHb) was purified by gel filtration chromatography and visualized by SDS-PAGE. Effects of temperature and pH on secondary structure and conformation changes of cHb were studied using circular dichroism spectropolarimeter and fourier transform infrared spectrophotometer. The secondary structure of intact cHb was mainly α-helices. cHb was not heat stable when heated at 65 °C and cooled down to original temperature, indicating the irreversible unfolding process. The stability of cHb at different pH ranging from 2.5 to 10.5 was determined. The maximum value of the α-helix content was found at pH 3.5 and tended to decrease at strong acid and strong base. The antioxidant activities of heat treated cHb and cHb in solution with pH range 2.5 to 10.5 were tested by DPPH radical scavenging assay. cHb at pH 4.5, having highest β-turn structure, showed highest radical scavenging activity. In contrast to pH, heat had no effect on antioxidant activity of cHb.
Tài liệu tham khảo
Artmann GM, Burns L, Canaves JM, Temiz-Artmann A, Schmid-Schonbein GW, Chien S, Maggakis-Kelemen C (2004) Eur Biophys J 33:490–496
Braunitzer G, Gehring-Muller R, Hilschmann N, Hilse K, Hobom G, Rudloff V, Liebold-Wittmann B (1961) Hoppe-Seyler’s Z Physiol. Chem 325:283–286
Chang CY, Wu KC, Chiang SH (2005) Food Chem 100:1537–1543
Chang CY, Wu KC, Lin ZY (2004) Food Chem Antioxid Bioact Agents 23:79–85
Choi Y, Lee SM, Chun J, Lee HB, Lee J (2006) Food Chem 99:381–387
Dafre AL, Brandao TAS, Reischl E (2007) NRC Canada 85:404–412
Damian G, Canpean V (2005) Romanian J Biophys 15:67–72
Deepthi S, Johnson A, Sathish R, Pattabhi V (2000) Biochim Biophys Acta 1480:384–387
Dimino ML, Palmer AF (2007) J Chromatogr B Anal Technol Biomed Life Sci 856:353–357
Dyson J (1986) Hemoglobin: molecular, genetic and clinical aspects In: Animal hemoglobin. W.B. Saunders Company, Philadelphia
Gorr TA, Mable BK, Kleinschmidt T (1998) J Mol Evol 47:471–485
Hoffman BF, Key B, Ofer B, Kiryat T (2002) Reptilian-derived peptides for the treatment of microbial infections. In: United States Patent (USA) 6,340,667
Huang SW, Frankel EN, Schwarz K, German JB (1996) J Agric Food Chem 44:2496–2502
Ivanov VT, Karelin AA, Philippova MM, Nazimov IV, Pletnev VZ (1997) Biopolymers 43:171–188
Jiang J, Kurnikov I, Belikova NA, Xiao J, Zhao Q, Amoscato AA, Braslau R, Studer A, Fink MP, Greenberger JS, Wipf P, Kagan VE (2007) J Pharmacol Exp Ther 320:1050–1060
Kelly SM, Jess TJ, Price NC (2005) Biochim Biophys Acta 1751:119–139
Komiyama NH, Miyazaki G, Tame J, Nagai K (1995) Nature 373:244–246
Komiyama T, Miwa M, Yatabe T, Ikeda H (1984) J Biochem 95:1569–1575
Kruger NJ (1984) In: John MW (ed) The Bradford method for protein quantitation, 2nd edn. W.B. Saunders Company, Philadelphia
Leclercq F, Schnek A, Braunitzer G, Stangl A, Schrank B (1981) Hoppe-Seyler’s Z Physiol Chem 362:1151–1158
Lees JG, Miles AJ, Wien F, Wallace BA (2006) Bioinformatics 22:1955–1962
Li Y, Du Y, Zou C (2009) Eur Food Res Technol 228:1023–1028
Mahato M, Pal P, Kamilya T, Sarkar R, Talapatra GB (2010) J Phys Chem. B 114:495–502
Marcelino AMC, Gierasch LM (2008) Biopolymers 89:380–391
Parish CA, Jiang H, Tokiwa Y, Berova N, Nakanishi K, McCabe D, Zuckerman W, Xia MM, Gabay JE (2001) Bioorg Med Chem 9:377–382
Pata S, Yaraksa N, Daduang S, Temsiripong Y, Svasti J, Araki T, Thammasirirak S (2011) Dev Comp Immunol 35:545–553
Preecharram S, Daduang S, Bunyatratchata W, Araki T, Thammasirirak S (2008) Afr J Biotechnol 7:3121–3128
Preecharram S, Jearranaiprepame P, Daduang S, Temsiripong Y, Somdee T, Fukamizo T, Svasti J, Araki T, Thammasirirak S (2010) Anim Sci J 81:393–401
Shimada K, Fujikawa K, Yahara K, Nakamurat T (1992) J Agric Food Chem 40:945–948
Stuart BH (1996) Biochem Mol Biol Int 38:153–160